dadebarr@dadebarr-lambda:~/ptb/ptb-data$ wget https://cross-entropy.net/ML530/ptb-train.py.txt --2022-11-24 12:12:59-- https://cross-entropy.net/ML530/ptb-train.py.txt Resolving cross-entropy.net (cross-entropy.net)... 107.180.57.14 Connecting to cross-entropy.net (cross-entropy.net)|107.180.57.14|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 1902 (1.9K) [text/plain] Saving to: ‘ptb-train.py.txt’ ptb-train.py.txt 100%[============================================================>] 1.86K --.-KB/s in 0s 2022-11-24 12:13:00 (543 MB/s) - ‘ptb-train.py.txt’ saved [1902/1902] dadebarr@dadebarr-lambda:~/ptb/ptb-data$ time python ptb-train.py.txt 2022-11-24 12:13:09.554441: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 46692 MB memory: -> device: 0, name: NVIDIA RTX A6000, pci bus id: 0000:21:00.0, compute capability: 8.6 Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 250)] 0 embedding (Embedding) (None, 250, 1024) 10240000 lstm (LSTM) (None, 1024) 8392704 tied_embedding (TiedEmbeddi (None, 10000) 10240000 ng) ================================================================= Total params: 18,632,704 Trainable params: 18,632,704 Non-trainable params: 0 _________________________________________________________________ Epoch 1/4 2022-11-24 12:13:12.914291: W tensorflow/core/common_runtime/forward_type_inference.cc:231] Type inference failed. This indicates an invalid graph that escaped type checking. Error message: INVALID_ARGUMENT: expected compatible input types, but input 1: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_LEGACY_VARIANT } } } is neither a subtype nor a supertype of the combined inputs preceding it: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_FLOAT } } } while inferring type of node 'cond_40/output/_19' 2022-11-24 12:13:13.903034: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8303 2022-11-24 12:13:14.078867: I tensorflow/stream_executor/cuda/cuda_blas.cc:1786] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once. 3805/3805 [==============================] - 101s 26ms/step - loss: 5.1778 - sparse_categorical_crossentropy: 4.9132 - val_loss: 4.7897 - val_sparse_categorical_crossentropy: 4.4927 Epoch 2/4 3805/3805 [==============================] - 98s 26ms/step - loss: 4.5709 - sparse_categorical_crossentropy: 4.2374 - val_loss: 4.6354 - val_sparse_categorical_crossentropy: 4.2799 Epoch 3/4 3805/3805 [==============================] - 98s 26ms/step - loss: 4.3390 - sparse_categorical_crossentropy: 3.9486 - val_loss: 4.6286 - val_sparse_categorical_crossentropy: 4.2202 Epoch 4/4 3805/3805 [==============================] - 98s 26ms/step - loss: 4.1802 - sparse_categorical_crossentropy: 3.7391 - val_loss: 4.6613 - val_sparse_categorical_crossentropy: 4.2033 3723/3723 [==============================] - 12s 3ms/step real 6m54.917s user 5m58.381s sys 0m25.810s dadebarr@dadebarr-lambda:~/ptb/ptb-data$ kaggle competitions submit -c ml530-2022-fall-ptb -f predictions.csv -m "6:55" 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 2.14M/2.14M [00:03<00:00, 682kB/s] Successfully submitted to ml530-2022-fall-ptbdadebarr@dadebarr-lambda:~/ptb/ptb-data$