For the Bayesian Network we covered in class [slide 18 of http://cross-entropy.net/ML310/Frequentist_Statistics_and_Graphical_Models.pdf], what is the Probability(Tuberculosis = 1 | SputumSmear = 1, LungInfiltrates = 1, XRay = 1)? Use one of the following options to answer this question: a. use the disease.csv spreadsheet: http://cross-entropy.net/ML310/BayesNet.csv b. use the libpgm software [see the notebook: http://cross-entropy.net/ML310/Graphical_Models.zip] c. argue your use of conditional independence [based on the notebook: http://cross-entropy.net/ML310/Graphical_Models.zip] Probability(Tuberculosis = 1 | SputumSmear = 1, LungInfiltrates = 1, XRay = 1) = Probability(Tuberculosis = 1, SputumSmear = 1, LungInfiltrates = 1, XRay = 1) / Probability(SputumSmear = 1, LungInfiltrates = 1, XRay = 1) = P(T = 1, I = 1, X = 1, S = 1) / P(I = 1, X = 1, S = 1) = (P(P = 0, T = 1, I = 1, X = 1, S = 1) + P(P = 1, T = 1, I = 1, X = 1, S = 1)) / (P(P = 0, T = 1, I = 1, X = 1, S = 1) + P(P = 1, T = 1, I = 1, X = 1, S = 1) + P(P = 0, T = 0, I = 1, X = 1, S = 1) + P(P = 1, T = 0, I = 1, X = 1, S = 1)) = (0.002432 + 0.000512) / (0.002432 + 0.000512 + 0.0044688 + 0.014112) = 0.002944 / 0.0215248 = 0.1367725 ... and thanks to conditional independence, this is the same as ... Probability(Tuberculosis = 1 | SputumSmear = 1, LungInfiltrates = 1) = P(T = 1, I = 1, S = 1) / P(I = 1, S = 1) = (P(P = 0, T = 1, I = 1, X = 0, S = 1) + P(P = 0, T = 1, I = 1, X = 1, S = 1) + P(P = 1, T = 1, I = 1, X = 0, S = 1) + P(P = 1, T = 1, I = 1, X = 1, S = 1)) / (P(P = 0, T = 1, I = 1, X = 0, S = 1) + P(P = 0, T = 1, I = 1, X = 1, S = 1) + P(P = 1, T = 1, I = 1, X = 0, S = 1) + P(P = 1, T = 1, I = 1, X = 1, S = 1) + P(P = 0, T = 0, I = 1, X = 0, S = 1) + P(P = 0, T = 0, I = 1, X = 1, S = 1) + P(P = 1, T = 0, I = 1, X = 0, S = 1) + P(P = 1, T = 0, I = 1, X = 1, S = 1)) = (0.000608 + 0.002432 + 0.000128 + 0.000512) / (0.000608 + 0.002432 + 0.000128 + 0.000512 + 0.0011172 + 0.0044688 + 0.003528 + 0.014112) = 0.00368 / 0.026906 = 0.1367725