
[DLP] Introduction
Oct 6, 2022

ddebarr@uw.edu

https://cross-entropy.net/ML530/Deep_Learning_1.pdf

mailto:ddebarr@uw.edu
https://cross-entropy.net/ML530/Deep_Learning_1.pdf


What is Deep Learning?



What is Deep Learning?



Notebooks

Notebooks on GitHub:

• https://github.com/fchollet/deep-learning-with-python-notebooks

Discussion Forum:

• https://livebook.manning.com/book/deep-learning-with-python-
second-edition/discussion

https://github.com/fchollet/deep-learning-with-python-notebooks
https://livebook.manning.com/book/deep-learning-with-python-second-edition/discussion


AI > ML > DL

AI



Concise Definitions

• AI can be described as the effort to automate intellectual tasks 
normally performed by humans

• Machine learning is ... searching for useful representations and rules 
over some input data, within a predefined space of possibilities, using 
guidance from a feedback signal

AI



Ada Lovelace, 1843

“The Analytical Engine has no pretensions whatever to originate 
anything. It can do whatever we know how to order it to perform. . . . 
Its province is to assist us in making available what we’re already 
acquainted with.”

AI



John McCarty, Dartmouth

1956: Summer Workshop Proposal
• The study is to proceed on the basis of the conjecture that every aspect of 

learning or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it.

• An attempt will be made to find how to make machines use language, form 
abstractions and concepts, solve kinds of problems now reserved for humans, 
and improve themselves.

• We think that a significant advance can be made in one or more of these 
problems if a carefully selected group of scientists work on it together for a 
summer.

AI



AI Winters

• Winter: researchers and funds turn away from the field

• Hype surrounding the possibility of a “machine with the general 
intelligence of an average human being”; but it failed to materialize

• Initial success stories for expert systems fueled investment; but they 
proved to be expensive to maintain, difficult to scale, and limited in 
scope

https://www.researchgate.net/figure/Timeline-of-the-AI-winters_fig1_333039347

AI

https://www.researchgate.net/figure/Timeline-of-the-AI-winters_fig1_333039347


Machine Learning vs Classical Programming

AI



Requirements for Machine Learning

1. Input data points

2. Examples of the expected output

3. A way to measure whether the algorithm is doing a good job

AI



Example Problem

1. The inputs are the coordinates of our points.

2. The expected outputs are the colors of our points.

3. A way to measure whether our algorithm is doing a good job could 
be, for instance, the percentage of points that are being correctly 
classified.

AI



Improved Representation

AI



Deep Neural Network for Digit Classification

AI



Learned Data Representations

AI



Neural Network is Parameterized by Weights

AI



Loss Function Measures Prediction Quality

AI



Loss Function is Used to Update Weights

AI



Deep Learning Breakthroughs include …

• Near-human-level image classification

• Near-human-level speech transcription

• Near-human-level handwriting transcription

• Dramatically improved machine translation

• Dramatically improved text-to-speech conversion

• Digital assistants such as Google Assistant and Amazon Alexa

• Near-human-level autonomous driving

• Improved ad targeting, as used by Google, Baidu, or Bing

• Improved search results on the web

• Ability to answer natural language questions

• Superhuman Go playing

AI



Alternative Machine Learning Methods

• Probabilistic Modeling
Naïve Bayes vs Logistic Regression: Which generative?  Which discriminative?

• Shallow Neural Networks
Multi-Layer Perceptron (MLP) with one hidden layer and one output layer

• Kernel Methods
Support Vector Machines and Gaussian Processes

Loss Function for SVMs?

• Decision Trees, Random Forests, and Gradient Boosting Machines
Bootstrap Aggregation (bagging) vs Boosting

ML



Example Support Vector Machine (SVM)

Where do we find support vectors?

ML



Example Decision Tree

• Questions can incorporate either categorical or numeric features

• What can we do about missing values? 

ML



Deep Learning

• 1989: Yann LeCun et al publish “Handwritten Digit Recognition with a 
Back-Propagation Network” at the Neural Information Processing 
Systems conference [the 3rd year for this long running conference]

• 2011: Dan Ciresan, from Istituto Dalle Molle di Studi sull'Intelligenza 
Artificiale (IDSIA), wins academic image-classification competitions 
with a convolutional neural network

• 2012: Alex Krizhenvsky, from University of Toronto (advisor: Geoff 
Hinton), wins the ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC)
• 1.4 million images with 1,000 classes

• “Classical approach”: 74.3% Accuracy@5 vs “Deep”: 83.6% Accuracy@5

Commonly used for “perceptual” (e.g. visual) and other unstructured data

ML



Tool Survey: Top 5 Entries for Kaggle Contests
2017-2019

ML



Tool Survey: All Contestants
2020

ML



Why Deep Learning?  Why Now?

• Hardware
• Graphics Processing Units (GPUs): Nvidia [Common Unified Device Architecture 

(CUDA) API] and Advanced Micro Devices (AMD)

• Google Tensor Processing Units (TPUs)

• FLOPS: FLoating-point Operations Per Second; giga-, tera-, peta-, exa-

• Datasets and benchmarks
• ImageNet Large Scale Visual Recognition Challenge: https://www.image-net.org/

• The Pile: https://pile.eleuther.ai/

• Algorithmic advances
• Better activation functions: e.g. ReLU

• Better weight initialization; e.g. glorot uniform

• Better optimization schemes; e.g. AdaM

Enablers

https://www.image-net.org/
https://pile.eleuther.ai/
https://keras.io/api/layers/initializers/#glorotuniform-class


Investments in AI Start-Ups

Enablers



The Mathematical Building Blocks of Neural 
Networks



MNIST Sample Digits

• In machine learning, a category in a classification problem is called a 
class

• Data points are called samples

• The class associated with a specific sample is called a label

First Look



MNIST Data

First Look



MNIST Model Architecture

Initialization happens when you the layer is instantiated, as shown here 
… [use model.get_weights() to see initial weights]

First Look



MNIST Model “Compilation”

First Look



MNIST Data Preprocessing

• Images are “flattened”

• Min-max normalization is applied

First Look



MNIST Model Training

• Please use validation to sanity check performance

• Never more than an hour or so without a sanity check on hold-out data

“We quickly reach an accuracy of 0.989 (98.9%) on the training data”

First Look



MNIST Model Predictions

First Look



MNIST Model Testing

Nota bene: validation data should be used for model selection

“This gap between training accuracy and test accuracy is an example of overfitting”
… not so fast …
If validation accuracy continues to improve, we’re going to keep training.
It’s when validation accuracy deteriorates while training accuracy continues to improve that we need to stop.

First Look



Scalars: Rank-0 Tensors

Representation



Vectors: Rank-1 Tensors

Representation



Matrices: Rank-2 Tensors

Representation



Rank-3 and Higher-Rank Tensors

Representation



Numpy Attributes

• ndim: number of dimensions/axes (aka “rank”)

• shape: index count along each axis

• dtype: the data type; e.g. uint8, int32, float32, float16, float64

Representation



Plotting an MNIST Data

Representation



Slicing Tensors

Representation



Data Batches

Slicing along the “samples” dimension …

Representation



Real-world Examples of Data Tensors

• Vector data: Rank-2 tensors of shape (samples, features), where each 
sample is a vector of numerical attributes (“features”)

• Timeseries data or sequence data: Rank-3 tensors of shape (samples, 
timesteps, features), where each sample is a sequence (of length 
timesteps) of feature vectors

• Images: Rank-4 tensors of shape (samples, height, width, channels), 
where each sample is a 2D grid of pixels, and each pixel is 
represented by a vector of values (“channels”)

• Video: Rank-5 tensors of shape (samples, frames, height, width, 
channels), where each sample is a sequence (of length frames) of 
images

Representation



Vector Data Examples

• An actuarial dataset of people, where we consider each person’s age, 
gender, and income: (100000, 3)

• A dataset of text documents, where we represent each document by 
the counts of how many times each word appears in it (out of a 
dictionary of 20,000 common words): (500, 20000)

Representation



Timeseries and Sequence Data Examples

• A dataset of stock prices: (250, 390, 3)
• only 1 stock?

• 250 days worth of data

• 390 trading minutes in the day

• current price; highest price in the previous minute; lowest price in the 
previous minute

• A dataset of tweets, where we encode each tweet as a sequence of 
280 characters out of an alphabet of 128 unique characters: 
(1000000, 280, 128)

Representation



Image Data

• Channels first

(samples, color_depth, height, width)

*pytorch*

• Channels last

(samples, height, width, color_depth)

*tensorflow*

Representation



Video Data

• (samples, frames, height, width, color_depth)

• 60-second video clip

• 4-frames per second

• 144x256 frames

• color: each picture element (pixel) has 3 color values

{ red, green, blue } 

• (4, 240, 144, 256, 3): 106,168,320 float32 values; 4 bytes each

405 megabytes

Representation



Tensor Operations

keras.layers.Dense(512, activation="relu")

output = relu(dot(input, W) + b)

def naive_relu(x):

assert len(x.shape) == 2

x = x.copy()

for i in range(x.shape[0]):

for j in range(x.shape[1]):

x[i, j] = max(x[i, j], 0)

return x

Tensor Operations



Tensor Add

def naive_add(x, y):

assert len(x.shape) == 2

assert x.shape == y.shape

x = x.copy()

for i in range(x.shape[0]):

for j in range(x.shape[1]):

x[i, j] += y[i, j]

return x

Tensor Operations



Naïve Implementation is Wildly Slower

Tensor Operations



Broadcasting

import numpy as np

X = np.random.random((32, 10))

y = np.random.random((10,))

y = np.expand_dims(y, axis=0)

Y = np.concatenate([y] * 32, axis=0)

def naive_add_matrix_and_vector(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 1

assert x.shape[1] == y.shape[0]

x = x.copy()

for i in range(x.shape[0]):

for j in range(x.shape[1]):

x[i, j] += y[j]

return x

# What does this do, and what is the output size?

import numpy as np

x = np.random.random((64, 3, 32, 10))

y = np.random.random((32, 10))

z = np.maximum(x, y)

Tensor Operations



Vector Dot Product

x = np.random.random((32,))

y = np.random.random((32,))

z = np.dot(x, y)

z = x • y

def naive_vector_dot(x, y):

assert len(x.shape) == 1

assert len(y.shape) == 1

assert x.shape[0] == y.shape[0]

z = 0.

for i in range(x.shape[0]):

z += x[i] * y[i]

return z

Tensor Operations



Matrix-Vector Dot Product

def naive_matrix_vector_dot(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 1

assert x.shape[1] == y.shape[0]

z = np.zeros(x.shape[0])

for i in range(x.shape[0]):

for j in range(x.shape[1]):

z[i] += x[i, j] * y[j]

return z

def naive_matrix_vector_dot(x, y):

z = np.zeros(x.shape[0])

for i in range(x.shape[0]):

z[i] = naive_vector_dot(x[i, :], y)

return z

Tensor Operations



Matrix-Matrix Dot Product

def naive_matrix_dot(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 2

assert x.shape[1] == y.shape[0]

z = np.zeros((x.shape[0], y.shape[1]))

for i in range(x.shape[0]):

for j in range(y.shape[1]):

row_x = x[i, :]

column_y = y[:, j]

z[i, j] = naive_vector_dot(row_x, column_y)

return z

Tensor Operations



Tensor Reshaping

>>> x = np.array([[0., 1.],

[2., 3.],

[4., 5.]])

>>> x.shape

(3, 2)

>>> x = x.reshape((6, 1))

>>> x

array([[ 0.],

[ 1.],

[ 2.],

[ 3.],

[ 4.],

[ 5.]])

>>> x = x.reshape((2, 3))

>>> x

array([[ 0., 1., 2.],

[ 3., 4., 5.]])

>>> x = np.zeros((300, 20))

>>> x = np.transpose(x)

>>> x.shape

(20, 300)

train_images = train_images.reshape((60000, 28 * 28))

Tensor Operations



Example Vector

Tensor Operations



Geometric Interpretation of a Sum of Vectors

Tensor Operations



Translation as Vector Addition

Tensor Operations



2-D Rotation as a Dot Product

Tensor Operations



2-D Scaling as a Dot Product

Tensor Operations



Affine Transform in the Plane

Tensor Operations



Affine Transform Followed by ReLU Activation

Tensor Operations



Uncrumpling a Complicated Manifold of Data

“Uncrumpling paper balls is what machine learning is about” ☺

Tensor Operations



Training Loop

• Draw a batch of training samples, x, and corresponding targets, 
y_true

• Run the model on x (a step called the forward pass) to obtain 
predictions, y_pred

• Compute the loss of the model on the batch, a measure of the 
mismatch between y_pred and y_true

• Update all weights of the model in a way that slightly reduces the loss 
on this batch

Optimization



A Continuous Smooth Function

Optimization



Small Change in x Results in Small Change in y

Optimization



Derivative of f(x) with respect to x

Optimization



Training Loop Revisited

• Draw a batch of training samples, x, and corresponding targets, y_true

• Run the model on x to obtain predictions, y_pred (this is called the forward 
pass)

• Compute the loss of the model on the batch, a measure of the mismatch 
between y_pred and y_true

• Compute the gradient of the loss with regard to the model’s parameters 
(this is called the backward pass)

• Move the parameters a little in the opposite direction from the gradient: 
for example, W -= learning_rate * gradient, thus reducing the loss on the 
batch a bit

Optimization



SGD on a 1-D Loss Curve

Optimization



Gradient Descent on a 2-D Loss Surface

Optimization



Local Minimum vs Global Minimum

Optimization



Momentum Example

past_velocity = 0.

momentum = 0.1

while loss > 0.01:

w, loss, gradient = get_current_parameters()

velocity = past_velocity * momentum - learning_rate * gradient

w = w + momentum * velocity - learning_rate * gradient

past_velocity = velocity

update_parameter(w)

Optimization



Chain Rule

loss_value = loss(y_true, softmax(dot(relu(dot(inputs, W1) + b1), W2) + b2))

def fghj(x):

x1 = j(x)

x2 = h(x1)

x3 = g(x2)

y = f(x3)

return y

grad(y, x) == (grad(y, x3) * grad(x3, x2) * grad(x2, x1) * grad(x1, x))

Optimization



Example Computation Graph

Optimization



Forward: Regression with Absolute Error

Optimization



Backward: Regression with Absolute Error

Optimization



Gradient Tape Examples

import tensorflow as tf

x = tf.Variable(0.)

with tf.GradientTape() as tape:

y = 2 * x + 3

grad_of_y_wrt_x = tape.gradient(y, x)

x = tf.Variable(tf.random.uniform((2, 2)))

with tf.GradientTape() as tape:

y = 2 * x + 3

grad_of_y_wrt_x = tape.gradient(y, x)

W = tf.Variable(tf.random.uniform((2, 2)))

b = tf.Variable(tf.zeros((2,)))

x = tf.random.uniform((2, 2))

with tf.GradientTape() as tape:

y = tf.matmul(x, W) + b

grad_of_y_wrt_W_and_b = tape.gradient(y, [W, b])

Optimization



Training Loop Review: Graph

Implementing Keras



Training Loop Review: Code

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype("float32") / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype("float32") / 255

model = keras.Sequential([

layers.Dense(512, activation="relu"),

layers.Dense(10, activation="softmax")

])

model.compile(optimizer="rmsprop",

loss="sparse_categorical_crossentropy",

metrics=["accuracy"])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

Implementing Keras



Implementing Keras: Dense Class

import tensorflow as tf

class NaiveDense:

def __init__(self, input_size, output_size, activation):

self.activation = activation

w_shape = (input_size, output_size)

w_initial_value = tf.random.uniform(w_shape, minval=0, maxval=1e-1)

self.W = tf.Variable(w_initial_value)

b_shape = (output_size,

b_initial_value = tf.zeros(b_shape)

self.b = tf.Variable(b_initial_value)

def __call__(self, inputs)::

return self.activation(tf.matmul(inputs, self.W) + self.b)

@property

def weights(self):

return [self.W, self.b]

Implementing Keras



Implementing Keras: Sequential Class

class NaiveSequential:

def __init__(self, layers):

self.layers = layers

def __call__(self, inputs):

x = inputs

for layer in self.layers:

x = layer(x)

return x

@property

def weights(self):

weights = []

for layer in self.layers:

weights += layer.weights

return weights

Implementing Keras



Implementing Keras: Batch Generator

import math

class BatchGenerator:

def __init__(self, images, labels, batch_size=128):

assert len(images) == len(labels)

self.index = 0

self.images = images

self.labels = labels

self.batch_size = batch_size

self.num_batches = math.ceil(len(images) / batch_size)

def next(self):

images = self.images[self.index : self.index + self.batch_size]

labels = self.labels[self.index : self.index + self.batch_size]

self.index += self.batch_size

return images, labels

Implementing Keras



Implementing Keras: One Training Step

def one_training_step(model, images_batch, labels_batch):

with tf.GradientTape() as tape:

predictions = model(images_batch)

per_sample_losses = tf.keras.losses.sparse_categorical_crossentropy(

labels_batch, predictions)

average_loss = tf.reduce_mean(per_sample_losses)

gradients = tape.gradient(average_loss, model.weights)

update_weights(gradients, model.weights)

return average_loss

Implementing Keras



Implementing Keras: Optimizer

learning_rate = 1e-3

def update_weights(gradients, weights):

for g, w in zip(gradients, weights):

w.assign_sub(g * learning_rate)

Implementing Keras



Implementing Keras: Full Training Loop

def fit(model, images, labels, epochs, batch_size=128):

for epoch_counter in range(epochs):

print(f"Epoch {epoch_counter}")

batch_generator = BatchGenerator(images, labels)

for batch_counter in range(batch_generator.num_batches):

images_batch, labels_batch = batch_generator.next()

loss = one_training_step(model, images_batch, labels_batch)

if batch_counter % 100 == 0:

print(f"loss at batch {batch_counter}: {loss:.2f}")

Implementing Keras



Implementing Keras: “Go” Time!

from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype("float32") / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype("float32") / 255

fit(model, train_images, train_labels, epochs=10, batch_size=128)

predictions = model(test_images)

predictions = predictions.numpy()

predicted_labels = np.argmax(predictions, axis=1)

matches = predicted_labels == test_labels

print(f"accuracy: {matches.mean():.2f}")

Implementing Keras



Summary Concepts

• Tensors: ndim, shape, dtype

• Tensor operations: addition, tensor product, element-wise 
multiplication

• Model is parameterized by weights and biases

• Learning: updating weights to minimize a loss function

• Mini-batch stochastic gradient descent

• Chain rule used to find gradient of loss with respect to a parameters

• Loss used to evaluate a prediction

• Optimizer specifies how to update weights



Introduction to Keras and Tensorflow



Tensorflow

• It can automatically compute the gradient of any differentiable expression 
(as you saw in chapter 2), making it highly suitable for machine learning.

• It can run not only on CPUs, but also on GPUs and TPUs, highly parallel 
hardware accelerators.

• Computation defined in TensorFlow can be easily distributed across many 
machines.

• TensorFlow programs can be exported to other runtimes, such as C++, Java-
Script (for browser-based applications), or TensorFlow Lite (for applications 
running on mobile devices or embedded devices), etc. This makes 
TensorFlow applications easy to deploy in practical settings.

Tensorflow



Keras

TensorFlow is a low-level tensor computing platform, and 
Keras is a high-level deep learning API

Keras



Deep Learning on a GPU

You have 4 options:

• Use https://labs.azure.com/virtualmachines: your lab fee paid for this

• Buy and install a physical NVIDIA GPU on your workstation

• Use GPU instances on Google Cloud or AWS EC2

• Use the free GPU runtime from Colaboratory, a hosted notebook 
service offered by Google (for details about what a “notebook” is, see 
the next section)

Workspace

https://labs.azure.com/virtualmachines


Configuring Putty for Notebook Tunneling

Connection > SSH > Tunnels
• Source port: 8888

• Destination: localhost:8888

• Click “Add”

$  jupyter-notebook

Workspace



Colab Notebook

Workspace



Example Code Cell

Workspace



Example Text Cell

Workspace



Running Commands in Notebook

!pip install package_name

Workspace



Selecting Runtime and Accelerator

Workspace



Training a Neural Network

• First, low-level tensor manipulation—the infrastructure that underlies 
all modern machine learning. This translates to TensorFlow APIs:
• Tensors, including special tensors that store the network’s state (variables)

• Tensor operations such as addition, relu, matmul

• Backpropagation, a way to compute the gradient of mathematical expressions (handled in 
TensorFlow via the GradientTape object)

• Second, high-level deep learning concepts. This translates to Keras 
APIs:
• Layers, which are combined into a model

• A loss function, which defines the feedback signal used for learning

• An optimizer, which determines how learning proceeds

• Metrics to evaluate model performance, such as accuracy

• A training loop that performs mini-batch stochastic gradient descent

First Steps



All Ones or All Zeros

First Steps



Random Tensors

First Steps



NumPy Arrays are Assignable
TensorFlow Tensors are Not Assignable

First Steps



TensorFlow Variables Can Be Modified

First Steps



Math in TensorFlow

First Steps



Using the Gradient Tape

First Steps



Generating Two Classes

First Steps



TensorFlow: Variables and Model

First Steps



TensorFlow: Loss 

First Steps



TensorFlow: Training Step

First Steps



TensorFlow: Predictions

First Steps



SimpleDense

Keras API



Using the SimpleDense Layer

Keras API



Non-Sequential Models

• Two-branch Networks; e.g. process a pair of sentences

•Multihead Networks; e.g. predict a bounding box and 
a classification

•Residual Connections; e.g. create short-cut 
connections to mitigate the problem of vanishing 
gradients

Keras API



Surprise Transformer Reference

Sequence-to-Sequence (seq2seq) Example
• Example Applications

• Language Translation

• Text Summarization

• Encoder stack on the left [only propagated 
once

• Decoder stack on the right
• Start with start-of-text token, to predict the first 

token

• Repeat until end-of-text token predicted, or max 
length achieved

• Residual connections around the 
MultiHeadAttention blocks and Dense blocks

Keras API



Compile (Configuration) Step

• Loss function (objective function)—The quantity that will be 
minimized during training. It represents a measure of success for the 
task at hand.

• Optimizer—Determines how the network will be updated based on 
the loss function. It implements a specific variant of stochastic 
gradient descent (SGD).

• Metrics—The measures of success you want to monitor during 
training and validation, such as classification accuracy. Unlike the loss, 
training will not optimize directly for these metrics. As such, metrics 
don’t need to be differentiable.

Keras API



Compile Examples

Keras API



Compile Options

• Optimizers
• SGD
• RMSProp
• Adam
• Adagrad
• Etc.

• Losses
• CategoricalCrossentropy
• SparseCategoricalCrossentropy
• BinaryCrossentropy
• MeanSquaredError
• KLDivergence
• CosineSimilarity
• Etc.

• Metrics
• CategoricalAccuracy
• SparseCategoricalAccuracy
• BinaryAccuracy
• AUC
• Precision
• Recall
• Etc.

Keras API



The Fit Method

• The data (inputs and targets) to train on. It will typically be passed 
either in the form of NumPy arrays or a TensorFlow Dataset object. 
You’ll learn more about the Dataset API in the next chapters.

• The number of epochs to train for: how many times the training loop 
should iterate over the data passed.

• The batch size to use within each epoch of mini-batch gradient 
descent: the number of training examples considered to compute the 
gradients for one weight update step.

Keras API



Calling the Fit Method

Keras API



Using the validation_data Argument

Keras API



Using the Model After Training

Keras API



Summary

• TensorFlow is an industry-strength numerical computing framework that can run on CPU, GPU, or 
TPU. It can automatically compute the gradient of any differentiable expression, it can be 
distributed to many devices, and it can export programs to various external runtimes—even 
JavaScript.

• Keras is the standard API for doing deep learning with TensorFlow. It’s what we’ll use throughout 
this book.

• Key TensorFlow objects include tensors, variables, tensor operations, and the gradient tape.

• The central class of Keras is the Layer. A layer encapsulates some weights and some computation. 
Layers are assembled into models.

• Before you start training a model, you need to pick an optimizer, a loss, and some metrics, which 
you specify via the model.compile() method.

• To train a model, you can use the fit() method, which runs mini-batch gradient descent for you. 
You can also use it to monitor your loss and metrics on validation data, a set of inputs that the 
model doesn’t see during training.

• Once your model is trained, you use the model.predict() method to generate predictions on new 
inputs.



Getting Started: Classification and Regression



3 Case Studies

•Classifying movie reviews as positive or negative 
(binary classification)

•Classifying news wires by topic (multiclass 
classification)

• Estimating the price of a house, given real-estate data 
(scalar regression)



Classification and Regression Glossary

• Sample or input

• Prediction or output

• Target

• Prediction error or loss value

• Classes

• Label

• Ground-truth or annotations

• Binary classification

• Multiclass classification

• Multilabel classification

• Scalar regression

• Vector regression (e.g. bounding 
box)

• Mini-batch or batch



Internet Movie DataBase (IMDB)

• 25,000 positive: {7, 8, 9, 10} stars

• 25,000 negative: {1, 2, 3, 4 } stars

IMDB



Decoding Reviews

IMDB



Multi-Hot Encoding of Documents (Reviews)

IMDB



The IMDB Model

IMDB



Rectified Linear Unit (ReLU) Activation
It was linear ‘til someone rect it ☺

IMDB



Sigmoid Activation

Also Known As (AKA) the Logistic Function, mapping log odds to a 
probability estimate

IMDB



Without the Activation Function?

• The activation function is required to learn non-linear 
transforms, like the eXclusive OR (XOR) example we 
reviewed earlier

•Without a linear activation function, any adjacent pair 
of Dense() layers could be combined into a single 
equivalent Dense() layer

IMDB



Training the Model

IMDB



IMDB: Crossentropy and Accuracy

IMDB



Plotting Crossentropy

IMDB



Plotting Accuracy

IMDB



Retraining a Model from Scratch

Nota bene: we’re using all of the data; e.g. x_train vs partial_x_train

IMDB



IMDB: Stuff to Try

• You used two representation layers before the final classification 
layer. Try using one or three representation layers, and see how doing 
so affects validation and test accuracy.

• Try using layers with more units or fewer units: 32 units, 64 units, and 
so on.

• Try using the mse loss function instead of binary_crossentropy.

• Try using the tanh activation (an activation that was popular in the 
early days of neural networks) instead of relu.

IMDB



IMDB: Wrapping Up

• You usually need to do quite a bit of preprocessing on your raw data in order to be able 
to feed it—as tensors—into a neural network. Sequences of words can be encoded as 
binary vectors, but there are other encoding options too.

• Stacks of Dense layers with relu activations can solve a wide range of problems (including 
sentiment classification), and you’ll likely use them frequently.

• In a binary classification problem (two output classes), your model should end with a 
Dense layer with one unit and a sigmoid activation: the output of your model should be a 
scalar between 0 and 1, encoding a probability.

• With such a scalar sigmoid output on a binary classification problem, the loss function 
you should use is binary_crossentropy.

• The rmsprop optimizer is generally a good enough choice, whatever your problem. That’s 
one less thing for you to worry about.

• As they get better on their training data, neural networks eventually start overfitting and 
end up obtaining increasingly worse results on data they’ve never seen before. Be sure to 
always monitor performance on data that is outside of the training set.

IMDB



Reuters News Articles

46 Topics
• 8,982 training

• 2,246 testing

Reuters



Dense CategoricalCrossentropy

Reuters



Reuters Model

Reuters



Training the Reuters Model

Reuters



Reuters: Crossentropy and Accuracy

Reuters



Retrain the Model

Reuters



Baseline [null model; no predictors]

Alternatively … [majority classifier for the win (FTW)]

>>> import numpy as np

>>> import pandas as pd

>>> (trnX, trnY), (tstX, tstY) = datasets.reuters.load_data()

>>> np.max(pd.DataFrame(trnY)[0].value_counts())

3159

>>> np.max(pd.DataFrame(trnY)[0].value_counts()) / len(trnY)

0.3517034068136273

Reuters



Information “Bottleneck” 

Reuters



Reuters: Things to Try

• Try using larger or smaller layers: 32 units, 128 units, 
and so on.

• You used two intermediate layers before the final 
softmax classification layer.  Now try using a single 
intermediate layer, or three intermediate layers.

Reuters



Reuters: Wrapping Up

• If you’re trying to classify data points among N classes, your model should end with a 
Dense layer of size N.

• In a single-label, multiclass classification problem, your model should end with a softmax 
activation so that it will output a probability distribution over the N output classes.

• Categorical crossentropy is almost always the loss function you should use for such 
problems. It minimizes the distance between the probability distributions output by the 
model and the true distribution of the targets.

• There are two ways to handle labels in multiclass classification:
• Encoding the labels via categorical encoding (also known as one-hot encoding) and using 

categorical_crossentropy as a loss function
• Encoding the labels as integers and using the sparse_categorical_crossentropy loss function

• If you need to classify data into a large number of categories, you should avoid creating 
information bottlenecks in your model due to intermediate layers that are too small.

Reuters



Regression vs Regression?

• “Don’t confuse regression and the logistic regression algorithm. 
Confusingly, logistic regression isn’t a regression algorithm—it’s a 
classification algorithm.”

• Pop quiz: in logistic regression, what is the linear model trying to 
predict?

• Hint: what is the input to a logistic function?

Boston



Boston Housing Data: Beware Bias!

• https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

• Originally published with this paper: 
https://www.law.berkeley.edu/files/Hedonic.PDF

Strongly disagree with
using this predictor:
ethics are for everyone

Boston

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.law.berkeley.edu/files/Hedonic.PDF


Boston

Boston



Normalizing: Centering and Scaling the Data

Boston



Boston: Model

What’s sketchy about this function?

Boston



K-Fold Cross Validation (K=3)

Boston



K-Fold Cross Validation Implementation

Boston



K-Fold Cross Validation Results

Boston



Saving Histories

Boston



Averaged Mean Absolute Error Values: Take 1

Boston



Excluding the First 10 Points

Boston



Building the Final Model

This was necessary, as we’re using all of the data …

Boston



Predictions

Boston



Boston: Wrapping Up

• Regression is done using different loss functions than we used for 
classification. Mean squared error (MSE) is a loss function commonly used 
for regression.

• Similarly, evaluation metrics to be used for regression differ from those 
used for classification; naturally, the concept of accuracy doesn’t apply for 
regression. A common regression metric is mean absolute error (MAE).

• When features in the input data have values in different ranges, each 
feature should be scaled independently as a preprocessing step.

• When there is little data available, using K-fold validation is a great way to 
reliably evaluate a model.

• When little training data is available, it’s preferable to use a small model 
with few intermediate layers (typically only one or two), in order to avoid 
severe overfitting.

Boston



Chapter Summary

• You’ll usually need to preprocess raw data before feeding it into a neural 
network.

• When your data has features with different ranges, scale each feature 
independently as part of preprocessing.

• As training progresses, neural networks eventually begin to overfit and 
obtain worse results on never-before-seen data.

• If you don’t have much training data, use a small model with only one or 
two intermediate layers, to avoid severe overfitting.

• If your data is divided into many categories, you may cause information 
bottlenecks if you make the intermediate layers too small.

• When you’re working with little data, K-fold validation can help reliably 
evaluate your model.



Fundamentals of Machine Learning



Canonical Overfitting Behavior

Generalization



Noisy Data: Some Funky MNIST Digits

Generalization



Noisy Labels

Generalization



Dealing with Outliers: Robust Fit vs Over Fit

Generalization



Class Overlap: Robust Fit vs Over Fit

Generalization



Adding Noise to MNIST

If I was into torture, this is how I would roll …

Generalization



Effects of Noise on Validation Accuracy

Generalization



Fitting a Model with Randomly Shuffled 
Labels
The point: if we’re desperate enough, we can hallucinate that we’re 
making progress [learn to recognize when stuff has gone off the rails] …

Generalization



The Manifold Hypothesis

•The manifold hypothesis posits that all natural 
data lies on a low-dimensional manifold within 
the high-dimensional space where it is encoded

•There is structure in the natural world; e.g. only 
a small fraction of the 256**784 possible MNIST 
“digits” are actually “likely”

Generalization



Examples of Variational AutoEncoder Outputs

"showing that the space of handwritten digits forms a 'manifold' " …

Generalization



Implications

• Machine learning models only have to fit relatively simple, low-
dimensional, highly structured subspaces within their potential input 
space (latent manifolds).

• Within one of these manifolds, it’s always possible to interpolate 
between two inputs, that is to say, morph one into another via a 
continuous path along which all points fall on the manifold.

• “The ability to interpolate between samples is the key to 
understanding generalization in deep learning.”

Generalization



Manifold Interpolation

See Figure 12.18: we’re moving from “left to right” along a single latent 
variable dimension

Generalization



Going from Random to Robust to Over Fit

Generalization



Dense vs Sparse Sampling

Generalization



Hold-Out Validation [hold-out test too!]

Evaluation



K-Fold Cross Validation

Helpful when model performance shows significant variance based on 
your train/validation split

Evaluation



Iterated K-Fold Cross Validation

• For situations in which you have relatively little data 
available and you need to evaluate your model as 
precisely as possible

• Found it to be extremely helpful in Kaggle 
competitions

• You end up training and evaluating P * K models 
(where P is the number of iterations you use), which 
can be very expensive

Evaluation



Stuff to Keep in Mind

• Data representativeness: You want both your training set and test set to be 
representative of the data at hand.  Training on MNIST digits 0-7 won't help 
with testing on digits 8-9 :)

• The arrow of time: If you’re trying to predict the future given the past (for 
example, tomorrow’s weather, stock movements, and so on), you should 
not randomly shuffle your data before splitting it, because doing so will 
create a temporal leak: your model will effectively be trained on data from 
the future.

• Redundancy in your data: If some data points in your data appear twice 
(fairly common with real-world data), then shuffling the data and splitting 
it into a training set and a validation set will result in redundancy between 
the training and validation sets. In effect, you’ll be testing on part of your 
training data.

Evaluation



3 Common Problems

• Training doesn’t get started: your training loss doesn’t go down over 
time.

• Training gets started just fine, but your model doesn’t meaningfully 
generalize: you can’t beat the common-sense baseline you set.

• Training and validation loss both go down over time, and you can beat 
your baseline, but you don’t seem to be able to overfit, which 
indicates you’re still underfitting.

Improving Fit



Tuning Gradient Descent Parameters

Try high learning rate with MNIST just so you can recognize the behavior?

• Lowering or increasing the learning rate: a learning rate that is too high 
may lead to updates that vastly overshoot a proper fit, like in the 
preceding example, and a learning rate that is too low may make 
training so slow that it appears to stall.

• Increasing the batch size: a batch with more samples will lead to 
gradients that are more informative and less noisy (lower variance).

Improving Fit



Better Architecture

• Using a model that makes the right assumptions about the problem is 
essential to achieve generalization: you should leverage the right 
architecture priors.

• In the following chapters, you’ll learn about the best architectures to 
use for a variety of data modalities—images, text, timeseries, and so 
on. In general, you should always make sure to read up on 
architecture best practices for the kind of task you’re attacking—
chances are you’re not the first person to attempt it.

• https://paperswithcode.com/sota

Improving Fit

https://paperswithcode.com/sota


Effect of Insufficient Model Capacity

Which curve is demonstrating insufficient model capacity?

Improving Fit



Dataset Curation

• Make sure you have enough data. Remember that you need a dense 
sampling of the input-cross-output space. More data will yield a 
better model. Sometimes, problems that seem impossible at first 
become solvable with a larger dataset.

• Minimize labeling errors—visualize your inputs to check for 
anomalies, and proofread your labels.

• Clean your data and deal with missing.

• If you have many features and you aren’t sure which ones are actually 
useful, do feature selection.

Improving Generalization



Feature Engineering

Hard to learn

Easy to learn

Improving Generalization



Feature Engineering

• Good features still allow you to solve problems more elegantly while 
using fewer resources. For instance, it would be ridiculous to solve 
the problem of reading a clock face using a convolutional neural 
network.

• Good features let you solve a problem with far less data. The ability of 
deep learning models to learn features on their own relies on having 
lots of training data available; if you have only a few samples, the 
information value in their features becomes critical.

Improving Generalization



Early Stopping

• In deep learning, we always use models that are vastly 
overparameterized: they have way more degrees of 
freedom than the minimum necessary to fit to the 
latent manifold of the data.

• This overparameterization is not an issue, because you 
never fully fit a deep learning model. Such a fit 
wouldn’t generalize at all.

Improving Generalization



Model Regularization: Capacity

Example: Width 16 vs Width 4 Layers

Improving Generalization



Model Regularization: Capacity

Example: Width 512 vs Width 16 Capacity

Improving Generalization



Weight Regularization

• L1 regularization: The cost added is proportional to the 
absolute value of the weight coefficients (the L1 norm of the 
weights).

• L2 regularization: The cost added is proportional to the 
square of the value of the weight coefficients (the L2 norm of 
the weights). L2 regularization is also called weight decay in 
the context of neural networks. Don’t let the different name 
confuse you: weight decay is mathematically the same as L2 
regularization.

Improving Generalization



Weight Regularization

Improving Generalization



Weight Regularization

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/
experimental/AdamW [keras.io]

https://arxiv.org/abs/1711.05101v3
[paperswithcode.com/methods]

Improving Generalization

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/experimental/AdamW
https://arxiv.org/abs/1711.05101v3


Dropout

We randomly select x% of the activations of a layer and set their value 
to zero

Improving Generalization



Alternatives to Compensate for Dropout

• Dropout (random zeros) only happens at training time

• To keep the same expected value (between training and testing), we 
need to either
• scale down the activations at testing time

• scale up the activations at training time [this is common]

• The rate below is the “keep” rate, where keep_rate = 1 – dropout_rate

Improving Generalization



Dropout Effect

Improving Generalization



Tactics to Improve Generalization

• Get more training data, or better training data

• Develop better features

• Reduce the capacity of the model

• Add weight regularization (for smaller models)

• Add dropout

Improving Generalization



Summary

• The purpose of a machine learning model is to generalize: to perform accurately on never-before-seen inputs. It’s 
harder than it seems.

• A deep neural network achieves generalization by learning a parametric model that can successfully interpolate 
between training samples—such a model can be said to have learned the “latent manifold” of the training data. This 
is why deep learning models can only make sense of inputs that are very close to what they’ve seen during training.

• The fundamental problem in machine learning is the tension between optimization and generalization: to attain 
generalization, you must first achieve a good fit to the training data, but improving your model’s fit to the training 
data will inevitably start hurting generalization after a while. Every single deep learning best practice deals with 
managing this tension.

• The ability of deep learning models to generalize comes from the fact that they manage to learn to approximate the 
latent manifold of their data, and can thus make sense of new inputs via interpolation.

• It’s essential to be able to accurately evaluate the generalization power of your model while you’re developing it. 
You have at your disposal an array of evaluation methods, from simple holdout validation to K-fold cross-validation 
and iterated K-fold cross-validation with shuffling. Remember to always keep a completely separate test set for final 
model evaluation, since information leaks from your validation data to your model may have occurred.

• When you start working on a model, your goal is first to achieve a model that has some generalization power and 
that can overfit. Best practices for doing this include tuning your learning rate and batch size, leveraging better 
architecture priors, increasing model capacity, or simply training longer.

• As your model starts overfitting, your goal switches to improving generalization through model regularization. You 
can reduce your model’s capacity, add dropout or weight regularization, and use early stopping. And naturally, a 
larger or better dataset is always the number one way to help a model generalize.



The Universal Workflow of Machine Learning



Machine Learning Consulting Projects

• A personalized photo search engine for a picture-sharing social network: type in 
“wedding” and retrieve all the pictures you took at weddings, without any 
manual tagging needed.

• Flagging spam and offensive text content among the posts of a budding chat app

• Building a music recommendation system for users of an online radio

• Detecting credit card fraud for an e-commerce website

• Predicting display ad click-through rate to decide which ad to serve to a given 
user at a given time

• Flagging anomalous cookies on the conveyor belt of a cookie-manufacturing line

• Using satellite images to predict the location of as-yet unknown archeological 
sites



Note on Ethics

• You may sometimes be offered ethically dubious projects, such as “building 
an AI that rates the trustworthiness of someone from a picture of their 
face”

• It isn’t clear why trustworthiness would be reflected on someone’s face
• Collecting a dataset for this task would amount to recording the biases and 

prejudices of the people who label the pictures
• The models you would train on such data would merely encode these same 

biases into a black-box algorithm that would give them a thin veneer of 
legitimacy

• Your model would be laundering and operationalizing at scale the worst 
aspects of human judgement, with negative effects on the lives of real 
people



The Universal Workflow of Machine Learning

• Define the task

• Develop a model

• Deploy the model



Define the Task

• Frame the problem

• Collect a dataset

• Understand your data

• Choose a measure of success

Define the Task



Frame the Problem

• What are you trying to predict?  What will your input data be?

• What type of machine learning task are you facing?

• What do existing solutions look like?

• Are there any particular constraints you will need to deal with?

Define the Task



Machine Learning Tasks

• The photo search engine project is a multiclass, multilabel classification task.

• The spam detection project is a binary classification task. If you set “offensive content” as 
a separate class, it’s a three-way classification task.

• The music recommendation engine turns out to be better handled not via deep learning, 
but via matrix factorization (collaborative filtering).

• The credit card fraud detection project is a binary classification task.

• The click-through-rate prediction project is a scalar regression task.

• Anomalous cookie detection is a binary classification task, but it will also require an 
object detection model as a first stage in order to correctly crop out the cookies in raw 
images. Note that the set of machine learning techniques known as “anomaly detection” 
would not be a good fit in this setting!

• The project for finding new archeological sites from satellite images is an image-similarity 
ranking task: you need to retrieve new images that look the most like known 
archeological sites.

Define the Task



Collect a Dataset

• The photo search engine project requires you to first select the set of labels you want to classify—
you settle on 10,000 common image categories. Then you need to manually tag hundreds of 
thousands of your past user-uploaded images with labels from this set.

• For the chat app’s spam detection project, because user chats are end-to-end encrypted, you 
cannot use their contents for training a model. You need to gain access to a separate dataset of 
tens of thousands of unfiltered social media posts, and manually tag them as spam, offensive, or 
acceptable.

• For the music recommendation engine, you can just use the “likes” of your users. No new data 
needs to be collected. Likewise for the click-through-rate prediction project: you have an 
extensive record of click-through rate for your past ads, going back years.

• For the cookie-flagging model, you will need to install cameras above the conveyor belts to collect 
tens of thousands of images, and then someone will need to manually label these images. The 
people who know how to do this currently work at the cookie factory, but it doesn’t seem too 
difficult. You should be able to train people to do it.

• The satellite imagery project will require a team of archeologists to collect a database of existing 
sites of interest, and for each site you will need to find existing satellite images taken in different 
weather conditions. To get a good model, you’re going to need thousands of different sites.

Define the Task



Investing in Annotation Infrastructure

• Should you annotate the data yourself?

• Should you use a crowdsourcing platform like Mechanical Turk to 
collect labels?

• Should you use the services of a specialized data-labeling company?

Define the Task



Annotation Constraints

• Do the data labelers need to be subject matter experts, or could 
anyone annotate the data?

• If annotating the data requires specialized knowledge, can you train 
people to do it?

• Do you, yourself, understand the way experts come up with the 
annotations?

Define the Task



Beware of Non-Representative Data

• Suppose you’re developing an app where users can take pictures of a 
plate of food to find out the name of the dish.

• Come deployment time, feedback from angry users starts rolling in: 
your app gets the answer wrong 8 times out of 10. What’s going on? 
Your accuracy on the test set was well over 90%!

• A quick look at user-uploaded data reveals that mobile picture 
uploads of random dishes from random restaurants taken with 
random smartphones look nothing like the professional-quality, well-
lit, appetizing pictures you trained the model on: your training data 
wasn’t representative of the production data.

https://www.gwern.net/Tanks

Define the Task

https://www.gwern.net/Tanks


Concept Drift

• A music recommendation engine trained in the year 2013 may not be 
very effective today

• Likewise, the IMDB dataset you worked with was collected in 2011, 
and a model trained on it would likely not perform as well on reviews 
from 2020 compared to reviews from 2012, as vocabulary, 
expressions, and movie genres evolve over time

• Concept drift is particularly acute in adversarial contexts like credit 
card fraud detection, where fraud patterns change practically every 
day

• Dealing with fast concept drift requires constant data collection, 
annotation, and model retraining

Define the Task



The Problem of Sampling Bias

• The editor of the Tribune had trusted the results of a phone survey—
but phone users in 1948 were not a random, representative sample of 
the voting population

• They were more likely to be richer, conservative, and to vote for 
Dewey, the Republican candidate

Define the Task



Understand Your Data

• If your data includes images or natural language text, take a look at a few samples (and their 
labels) directly.

• If your data contains numerical features, it’s a good idea to plot the histogram of feature values to 
get a feel for the range of values taken and the frequency of different values.

• If your data includes location information, plot it on a map. Do any clear patterns emerge?

• Are some samples missing values for some features? If so, you’ll need to deal with this when you 
prepare the data (we’ll cover how to do this in the next section).

• If your task is a classification problem, print the number of instances of each class in your data. 
Are the classes roughly equally represented? If not, you will need to account for this imbalance.

• Check for target leaking: the presence of features in your data that provide information about the 
targets and which may not be available in production. If you’re training a model on medical 
records to predict whether someone will be treated for cancer in the future, and the records 
include the feature “this person has been diagnosed with cancer,” then your targets are being 
artificially leaked into your data. Always ask yourself, is every feature in your data something that 
will be available in the same form in production?

Define the Task



Choose a Measure of Success

• To achieve success on a project, you must first define what you mean 
by success
• Accuracy?

• Precision and recall?

• Customer retention rate?

• Your metric for success will guide all of the technical choices you 
make throughout the project

• It should directly align with your higher-level goals, such as the 
business success of your customer

Define the Task



Develop a Model

• Prepare the data

• Choose an evaluation protocol

• Beat a baseline

• Scale up: develop a model that overfits

• Regularize and tune your model

Develop a Model



Prepare the Data

• Prepare the data
• Vectorization

• Value normalization
• Values should be small; e.g. in the interval [0, 1]

• Values should be homogeneous: roughly the same range

• Handling missing values
• Categorical: create a “value is missing” category

• Numerical: consider using the mean or median value for the feature (or predict it)

Develop a Model



Choose an Evaluation Protocol

• Validation data is used for hyperparameter optimization
• Hold-out validation

• K-fold cross-validation
• Too few folds (e.g. k = 2) may yield high bias

• Too many folds (e.g. k = n) may yield high variance

• Iterated k-fold cross-validation

• You’ll also need hold-out testing data

Develop a Model



Beating a Simple Baseline

• Feature engineering/selection

• Select an architecture (e.g. dense, convolutional, recurrent, 
transformer)

• Configure training (e.g. loss, optimizer)

Develop a Model



Picking the Right Loss Function

Develop a Model



Scale Up: Develop a Model that Overfits

• Add layers

• Make the layers bigger

• Train for more epochs

Develop a Model **********



Regularize and Tune Your Model

• Try different architectures; add or remove layers

• Add dropout

• If your model is small, add L1 or L2 regularization

• Try different hyperparameters (such as the number of units per layer 
or the learning rate of the optimizer) to find the optimal configuration

• Optionally, iterate on data curation or feature engineering: collect and 
annotate more data, develop better features, or remove features that 
don’t seem to be informative

• Once you’ve selected a satisfactory model configuration, you can train 
your final production model on all available data and evaluate it one 
last time on the test set

**********Develop a Model



Deploy the Model

• Explain your work to stakeholders and set expectations

• Ship an inference model

• Monitor your model in the wild

• Maintain your model

Deploy the Model



Explain Your Work to Stakeholders and Set 
Expectations
• The expectations of non-specialists towards AI systems are often 

unrealistic.

• Consider showing some examples of the failures; e.g. false positives 
and false negatives.

• “With these settings, the fraud detection model would have a 5% 
false negative rate and a 2.5% false positive rate. Every day, an 
average of 200 valid transactions would be flagged as fraudulent and 
sent for manual review, and an average of 14 fraudulent transactions 
would be missed. An average of 266 fraudulent transactions would be 
correctly caught.”

Deploy the Model



Deploying a Model as a REpresentational
State Transfer (REST) API
Use this when …

• The application that will consume the model’s prediction will have 
reliable access to the internet (obviously)

• The application does not have strict latency requirements: the 
request, inference, and answer round trip will typically take around 
500 ms

• The input data sent for inference is not highly sensitive: the data will 
need to be available on the server in a decrypted form, since it will 
need to be seen by the model (but note that you should use SSL 
encryption for the HTTP request and answer)

Deploy the Model



Deploying a Model on a Device

Use this when …

• Your model has strict latency constraints or needs to run in a low-
connectivity environment

• Your model can be made sufficiently small that it can run under the 
memory and power constraints of the target device

• Getting the highest possible accuracy isn’t mission critical for your 
task

• The input data is strictly sensitive and thus shouldn’t be decryptable 
on a remote server

Deploy the Model



Deploying a Model in the Browser

Use this when …
• You want to offload compute to the end user, which can dramatically 

reduce server costs.
• The input data needs to stay on the end user’s computer or phone. For 

instance, in our spam detection project, the web version and the desktop 
version of the chat app (implemented as a cross-platform app written in 
JavaScript) should use a locally run model.

• Your application has strict latency constraints. While a model running on 
the end user’s laptop or smartphone is likely to be slower than one running 
on a large GPU on your own server, you don’t have the extra 100 ms of 
network round trip.

• You need your app to keep working without connectivity, after the model 
has been downloaded and cached.

Deploy the Model



Inference Model Optimization

• Weight pruning: Not every coefficient in a weight tensor contributes 
equally to the predictions. It’s possible to considerably lower the 
number of parameters in the layers of your model by only keeping the 
most significant ones. This reduces the memory and compute 
footprint of your model, at a small cost in performance metrics. By 
deciding how much pruning you want to apply, you are in control of 
the trade-off between size and accuracy.

• Weight quantization: Deep learning models are trained with single-
precision floating-point (float32) weights. However, it’s possible to 
quantize weights to 8-bit signed integers (int8) to get an inference-
only model that’s a quarter the size but remains near the accuracy of 
the original model.

Deploy the Model



Monitor Your Model in the Wild

• Measure the effect
• Is user engagement in your online radio up or down after deploying the new music recommender 

system?
• Has the average ad click-through rate increased after switching to the new click-through-rate 

prediction model?
• Consider using randomized A/B testing to isolate the impact of the model itself from other 

changes: a subset of cases should go through the new model, while another control subset should 
stick to the old process. Once sufficiently many cases have been processed, the difference in 
outcomes between the two is likely attributable to the model.

• If possible, do a regular manual audit of the model’s predictions on production data. 
It’s generally possible to reuse the same infrastructure as for data annotation: send 
some fraction of the production data to be manually annotated, and compare the 
model’s predictions to the new annotations. For instance, you should definitely do 
this for the image search engine and the bad-cookie flagging system.

• When manual audits are impossible, consider alternative evaluation avenues such as 
user surveys (for example, in the case of the spam and offensive-content flagging 
system).

Deploy the Model



Maintain Your Model

• Watch out for changes in the production data. Are new features 
becoming available? Should you expand or otherwise edit the label 
set?

• Keep collecting and annotating data, and keep improving your 
annotation pipeline over time. In particular, you should pay special 
attention to collecting samples that seem to be difficult for your 
current model to classify—such samples are the most likely to help 
improve performance.

Deploy the Model



Summary: Define the Problem

• Understand the broader context of what you’re setting out to do—
what’s the end goal and what are the constraints?

• Collect and annotate a dataset; make sure you understand your data 
in depth.

• Choose how you’ll measure success for your problem—what metrics 
will you monitor on your validation data?



Summary: Develop Your Model

• Prepare your data.

• Pick your evaluation protocol: holdout validation? K-fold validation? 
Which portion of the data should you use for validation?

• Achieve statistical power: beat a simple baseline.

• Scale up: develop a model that can overfit.

• Regularize your model and tune its hyperparameters, based on 
performance on the validation data. A lot of machine learning 
research tends to focus only on this step, but keep the big picture in 
mind.



Summary: Deployment

• First, make sure you set appropriate expectations with stakeholders.

• Optimize a final model for inference, and ship a model to the 
deployment environment of choice—web server, mobile, browser, 
embedded device, etc.

• Monitor your model’s performance in production, and keep collecting 
data so you can develop the next generation of the model.



Working with Keras: a Deep Dive



Review

• models.Sequential() vs models.Model()

• layers.Dense()

• .compile(), .fit(), .evaluate(), .predict()



APIs for Building Models

Progressive disclosure of complexity for model building

3 APIs



Sequential API

3 APIs



Named Layers!

3 APIs



Specifying the Input Shape

3 APIs



Functional API

3 APIs



Multi-Input, Multi-Output Model

3 APIs



Lists for Inputs and Outputs

3 APIs



Dictionaries for Inputs and Outputs 

3 APIs



Plotting the Model

3 APIs pip install pydot
sudo apt-get install graphviz



Plotting the Model with Shape Information

3 APIs



Retrieving Inputs and Outputs

3 APIs



Simple Subclassed Model

3 APIs



Using the Subclassed Model

3 APIs



Including a Subclassed Model in a Functional 
Model

3 APIs



Including a Functional Model in a Subclassed 
Model

3 APIs



Standard Workflow: compile, fit, evaluate, 
predict

Training and Evaluation



Creating a Custom Metric

Training and Evaluation



Using a Custom Metric

Training and Evaluation



Callbacks

• callbacks.ModelCheckpoint: Saving the current state of the model at 
different points during training

• callbacks.EarlyStopping: Interrupting training when the validation loss 
is no longer improving (and of course, saving the best model obtained 
during training)

• callbacks.ReduceLROnPlateau: Dynamically adjusting the value of 
certain parameters during training—Such as the learning rate of the 
optimizer

• callbacks.CSVLogger: Logging training and validation metrics during 
training

Training and Evaluation



callbacks argument of the .fit() method

Training and Evaluation



Methods for Callbacks

Training and Evaluation



Creating a Custom Callback

Training and Evaluation



Using a Custom Callback

Training and Evaluation



Iterative Progress

Training and Evaluation



TensorBoard

• Visually monitor metrics during training

• Visualize your model architecture

• Visualize histograms of activations and gradients

• Explore embeddings in 3D

Training and Evaluation



Using TensorBoard

Training and Evaluation



Tensorboard

Training and Evaluation



Trainable vs Non-Trainable Weights

• Trainable weights: These are meant to be updated via 
backpropagation to minimize the loss of the model, such as the kernel 
and bias of a Dense layer.

• Non-trainable weights: These are meant to be updated during the 
forward pass by the layers that own them. For instance, if you wanted 
a custom layer to keep a counter of how many batches it has 
processed so far, that information would be stored in a non-trainable 
weight, and at each batch, your layer would increment the counter by 
one.

Customized Training and Evaluation



Creating a Training Step

Customized Training and Evaluation



Creating a Training Loop

Customized Training and Evaluation



Creating an Evaluation Loop

Customized Training and Evaluation



Adding @tf.function to compile (faster)

Customized Training and Evaluation



Custom Training Step

Customized Training and Evaluation



Using a Custom Training Step

Customized Training and Evaluation



Custom Training Step with compiled_metrics

Customized Training and Evaluation



Using a Custom Training Step

Customized Training and Evaluation



Summary

• Keras offers a spectrum of different workflows, based on the principle of progressive 
disclosure of complexity. They all smoothly inter-operate together.

• You can build models via the Sequential class, via the Functional API, or by subclassing 
the Model class. Most of the time, you’ll be using the Functional API.

• The simplest way to train and evaluate a model is via the default fit() and evaluate() 
methods.

• Keras callbacks provide a simple way to monitor models during your call to fit() and 
automatically take action based on the state of the model.

• You can also fully take control of what fit() does by overriding the train_step() method.

• Beyond fit(), you can also write your own training loops entirely from scratch. This is 
useful for researchers implementing brand-new training algorithms.

• Update the model’s metrics via self.compiled_metrics. Return a dict mapping metric 
names to their current value.


