
Using CNTK’s Python Interface
for Deep Learning

dave.debarr (at) gmail.com

slides @ http://cross-entropy.net/PyData

2017-07-05

What drop out called it “deep learning hype” instead of “backpropaganda”?
-- Naomi Saphra / ML Hipster: https://twitter.com/ML_Hipster/status/729487995816935425

http://cross-entropy.net/PyData
https://twitter.com/ML_Hipster/status/729487995816935425

Topics to be Covered

• Cognitive Toolkit (CNTK) installation

• What is “machine learning”? [gradient descent example]

• What is “learning representations”?

• Why do Graphics Processing Units (GPUs) help?

• How do we prevent overfitting?

• CNTK Packages and Modules

• Deep learning examples, including Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) examples

What is “Machine Learning”?

• Using data to create a model to map one-or-more input values to
one-or-more output values

• Interest from many groups
• Computer scientists: “machine learning”

• Statisticians: “statistical learning”

• Engineers: “pattern recognition”

Example Applications

• Object detection

• Speech recognition

• Translation

• Natural language processing

• Recommendations

• Genomics

• Advertising

• Finance

• Security

Relationships

http://www.deeplearningbook.org/contents/intro.html

http://www.deeplearningbook.org/contents/intro.html

What is Deep Learning?

http://www.deeplearningbook.org/contents/intro.html

http://www.deeplearningbook.org/contents/intro.html

Machine Learning Taxonomy

• Supervised Learning: output is provided for observations used for
training
• Classification: the output is a categorical label [our focus for today is

discriminative, parametric models]
• Regression: the output is a numeric value

• Unsupervised Learning: output is not provided for observations used
for training (e.g. customer segmentation)

• Semi-Supervised Learning: output is provided for some of the
observations used for training

• Reinforcement Learning: rewards are provided to provide positive or
negative reinforcement, with exploration used to seek an optimal
mapping from states to actions (e.g. games)

A Word (or Two) About Tensors

• A tensor is just a generalization of an array

• Scalar: a value [float32 often preferred for working with Nvidia GPUs]

• Vector: a one-dimensional array of numbers

• Matrix: a two-dimensional array of numbers

• Tensor: may contain three or more dimensions
• Array of images with Red Green Blue (RGB) channels

• Array of documents with each word represented by an “embedding”

Background

A Word (or Two) About Dot Products

• The “dot product” between 2 vectors (one-dimensional arrays of numeric
values) is defined as the sum of products for the elements:

• The dot product measures the similarity between the two vectors

• The dot product is an unnormalized version of the cosine of the angle
between two vectors, where the cosine takes on the maximum value of +1
if the two vectors “point” in the same direction; or the cosine takes on the
minimum value of -1 if the two vectors “point” in opposite directions

Background

Getting Access to a Platform with a GPU

• Graphics Processing Units (GPUs) often increase the speed of tensor
manipulation by an order of magnitude, because deep learning
consists of lots of easily parallelized operations (e.g. matrix
multiplication)

• GPUs often have thousands of processors, but they can be expensive
• If you’re just playing for a few hours, Azure is probably the way to go [rent

someone else’s GPU]
• If you’re a recurring hobbyist, consider buying an Nvidia card (cores; memory)

• GTX 1050 Ti (768; 4GB): $150 [no special power requirements]
• GTX 1070 (1920; 8GB): $400 [requires a separate power connector]
• GTX 1080 Ti (3584; 11GB): $700
• Titan Xp (3840; 12GB): $1200

• Will cover Azure VM here: don’t forget to delete it when you’re done!

Nvidia GTX 1080 Ti Card

In case you’re buying a card …
Fits in Peripheral Component Interconnect (PCI) Express x16 slot; but …

fancier cards require separate power connectors

http://www.nvidia.com/content/geforce-gtx/GTX_1080_Ti_User_Guide.pdf

http://www.nvidia.com/content/geforce-gtx/GTX_1080_Ti_User_Guide.pdf

Azure: Sign In

https://portal.azure.com/

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/regions/services/ [NC6 (Ubuntu): $0.9/hour]

https://portal.azure.com/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/regions/services/

Select “Virtual machines” (on the left)

Select “Create Virtual machines”

Select “Ubuntu Server”

Select “Ubuntu Server 16.04 LTS”

LTS: Long Term Support

Select the “Create” Button

Configure the Virtual Machine

Select “View all” (on the right)

Select “NC6” Virtual Machine (VM)

Configure “Settings”

Acknowledge “Summary”

Take Note of “Public IP address”

Install Support Software

• Download PuTTY [secure shell (ssh) software: optional (client)]
• ftp://ftp.chiark.greenend.org.uk/users/sgtatham/putty-latest/w32/putty-0.69-installer.msi

• When using ssh, check the “Connection > SSH> X11: Enable X11 Forwarding” option

• Download Xming X Server for Windows [optional (client)]
• https://sourceforge.net/projects/xming/files/latest/download

• Configure the Nvidia driver [required (server)]

CUDA_REPO_PKG=cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
wget -O /tmp/${CUDA_REPO_PKG} \

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG}
sudo dpkg -i /tmp/${CUDA_REPO_PKG}
rm -f /tmp/${CUDA_REPO_PKG}
sudo apt-get update
sudo apt-get install cuda-drivers
sudo apt-get install cuda

CUDA: Compute Unified Device Architecture

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/n-series-driver-setup#install-cuda-drivers-for-nc-vms

ftp://ftp.chiark.greenend.org.uk/users/sgtatham/putty-latest/w32/putty-0.69-installer.msi
https://sourceforge.net/projects/xming/files/latest/download
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/n-series-driver-setup#install-cuda-drivers-for-nc-vms

nvidia-smi

SMI: System Management Interface

NC6 has access to one of the two Nvidia K80 GPUs: 2496 cores; 12 GB memory
https://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf

https://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf

Logistic Regression Tutorial Example
https://gallery.cortanaintelligence.com/Collection/Cognitive-Toolkit-Tutorials-Collection

https://gallery.cortanaintelligence.com/Collection/Cognitive-Toolkit-Tutorials-Collection

Logistic Regression

• Logistic regression is a shallow, linear model
• Consists of a single “layer” with a single “sigmoid” activation function

• Cross entropy is used as a loss function: the objective function used to drive
“training” (i.e. updating the weights)

• We will use Stochastic Gradient Descent (SGD) in our example today,
because this is the core learning method used for training deep
learning models; but most “logistic regression” packages use a
method known as Limited memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization [an approximation of Iteratively
Reweighted Least Squares (IRLS)]

The Logistic Regression Model

The “sigmoid” function is used to map input features to a predicted
probability of class membership

Ƹ𝑝 =
1

1 + 𝑒𝑥𝑝 −𝒙𝑇𝒘

… where …

• 𝒙𝑇𝒘 is a “dot product”, a measure of the similarity between two vectors;
an unnormalized measure of the cosine of the angle between the feature
vector and the model’s weight vector [the weight vector points in the
direction of the “positive” class]

• Ƹ𝑝 is an estimate of the probability that the input vector belongs to the
positive class

Learning by Gradient Descent

• The gradient of the loss function is used to update the weights of the
model

• The gradient of the loss function tells us how to maximize the loss
function, so the negative of the gradient is used to minimize the loss
function

The Cross Entropy Loss Function

• This function is used to measure the dissimilarity between two
distributions

• In the context of evaluating pattern recognition models, we are using
this function to measure the dissimilarity of the target class indicator
and the predicted probability for the target class

https://www.kaggle.com/wiki/LogLoss

https://www.kaggle.com/wiki/LogLoss

Gradient Descent for Logistic Regression (1/4)

The cross entropy function, the function used for evaluating the quality of
a prediction, can be expressed as …

  

   

 

 

  

* *

*

1

log Pr 1| ;

1 1
log 1

1 exp 1 exp

1
log

1 exp

log 1 exp



 

 
    
                
 

 
  
  
 

  

i i

i i

y y

T T

i i

T

i i

T

i i

y

y

y

x w

x w x w

x w

x w

 

*

1, 1

1

2

i

i
i

y

y
y

  




Gradient Descent for Logistic Regression (2/4)

The derivative of the loss function with respect to a parameter indicates how
to update a weight to optimize the loss function …

[the machine “learns” by updating the weights to minimize the loss function]

  

     
1

log 1 exp

log 1 exp log 1 exp

T
i i

T T
i i i i

p

y

y y
w w

  

  
     

   

w x w

x w x w

Gradient Descent for Logistic Regression (3/4)

So we update a weight by subtracting the product of the input feature
value and the difference between the predicted probability and the
class membership indicator …

   

 
     

 
   

  
*

ˆlog 1 exp

ˆ ˆlog 1 exp
ˆ

ˆlog 1 exp
ˆ

1

ˆ1 exp


 



 
  



 
  



 
  
  
 

i i

i

i i i

ii

i i i i

ii

i i

i i

y f x
w

y f x f x
wf x

y f x x w
wf x

y x
y f x

Gradient Descent for Logistic Regression (4/4)

Showing steps of differentiation for completeness …

  
  

  

  

  
*

ˆexp

ˆ1 exp

1

ˆ1 exp

1
1

ˆ1 exp

1

ˆ1 exp


 

 

 


 
   
  
 

 
 

i i

i

i i

i

i i

i

i i

i

i i

y f x
y

y f x

y
y f x

y
y f x

y
y f x

http://www.derivative-calculator.net/

 
   

      
  

  
  

 
  

  
    

ˆlog 1 exp
ˆ

1 ˆ1 exp
ˆ ˆˆ1 exp

1 ˆ ˆ0 exp
ˆˆ1 exp

1 ˆ0 exp
ˆ1 exp


 



  
   

     

 
    

    

   
 

i i

i

i i

i ii i

i i i i

ii i

i i i

i i

y f x
f x

y f x
f x f xy f x

y f x y f x
f xy f x

y f x y
y f x

http://www.derivative-calculator.net/

Logistic Regression Example

input1

input2

output

input layer output layer

preprocessed features sigmoid activation layer

Simple SGD in Python

• $HOME/anaconda3/bin/jupyter notebook

• http://cross-entropy.net/PyData/

• 01_SGD.ipynb

http://cross-entropy.net/PyData/

Stratifying Gradient Descent

• Stochastic Gradient Descent (SGD): a randomly selected training set
observation is used to update the weights of the model

• Batch Gradient Descent: all training set observations are used to
update the weights of the model [better updates but more
computationally intensive than SGD]

• Mini-Batch Stochastic Gradient Descent: a subset of the training set is
used to update the weights of the model [a compromise; this is the
most popular version]

Multi-Layer Perceptron (MLP) Example

input1

input2

hidden1

hidden2

output

input layer hidden layer output layer

sigmoid activation layer sigmoid activation layerpreprocessed features

Simple MLP in Python

• 02_Backpropagation.ipynb

Backpropagation Description

http://www.deeplearningbook.org/contents/mlp.html

http://www.deeplearningbook.org/contents/mlp.html

Install CNTK

sudo apt-get install openmpi-bin
wget https://repo.continuum.io/archive/Anaconda3-4.1.1-Linux-x86_64.sh
/bin/bash Anaconda3-4.1.1-Linux-x86_64.sh

[press Enter]
[press the spacebar]
[Enter "yes" to access the license terms]
[press Enter to accept the default directory for installation: $HOME/anaconda3]
[Enter "yes" to prepend python to your program search path: $HOME/anaconda3/bin]

pip install https://cntk.ai/PythonWheel/GPU/cntk-2.0-cp35-cp35m-linux_x86_64.whl
sudo apt-get install chromium-browser

https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Binary-Manual

https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Binary-Manual

MLP Example

• 03_MLP_CNTK.ipynb

Learning Representations

• You could turn the classification problem from the Simple MLP
Example into a linearly separable problem by manually generating an
interaction feature (input1 * input2); but it’s convenient to have the
computer do the work for us (as shown in the Simple MLP Example)

• Deep learning models, neural networks with more than one hidden
layer, allow the computer to create a hierarchy of features

• For perceptual problems, such as computer vision and speech
recognition, deep learning is providing features that make the model’s
performance comparable to a human’s performance (for the specified
task)

Activation Functions

Why Consider Keras?

Install Keras

git clone https://github.com/fchollet/keras
cd keras
python setup.py install
export KERAS_BACKEND=cntk
cd examples
python mnist_mlp.py

Documentation: https://keras.io/
git clone https://github.com/PacktPublishing/Deep-Learning-with-Keras.git

https://keras.io/
https://github.com/PacktPublishing/Deep-Learning-with-Keras.git

MNIST Data Modified National Institutes of Standards and Technology data:
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/lenet/

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/lenet/

MNIST

• 04_MNIST_LR.ipynb

• 05_MNIST_MLP.ipynb

• 06_MNIST_MLP_Dropout.ipynb

• 07_MNIST_MLP_RMSProp.ipynb

• 08_MNIST_CNN.ipynb

Convolution Example

The output response map
quantifies the filter’s response at
locations within the image

http://intellabs.github.io/RiverTrail/tutorial/

http://intellabs.github.io/RiverTrail/tutorial/

CIFAR 10 Data Canadian Institute For Advanced Research (CIFAR):
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

CIFAR10

• 09_CIFAR10_CNN.ipynb

Text Classification

• 10_Reuters_MLP.ipynb

• 11_Newsgroups_GloVe_CNN.ipynb

Global Vector (GloVe) embeddingsword2vec embeddings

Example: embedding(king) - embedding(man) + embedding(woman) == embedding(queen)

Simple Recurrent Neural Network Example

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

𝑠𝑡 = 𝑓 𝑊𝑠𝑡−1 + 𝑈𝑥𝑡
𝑜𝑡 = 𝑔 𝑉𝑠𝑡

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Long Short-Term Memory (LSTM) Cell

Hands-On Machine Learning with Scikit-Learn and TensorFlow

Text Continued

• 12_IMDB_LSTM.ipynb

• 13_IMDB_LSTM_Bidirectional.ipynb

• 14_IMDB_FastText.ipynb

Recap of Stuff We Covered

• Brief Intro

• Setting Up an Azure VM with a GPU; and installing GPU drivers, CNTK,
and Keras

• Bunch of Examples, including both Feedforward and Recurrent Neural
Networks

1. SGD 8. MNIST CNN

2. Backpropagation 9. CIFAR10 CNN

3. MLP CNTK 10. Reuters MLP

4. MNIST LR 11. Newsgroups GloVe CNN

5. MNIST MLP 12. IMDB LSTM

6. MNIST MLP Dropout 13. IMDB LSTM Bidirectional

7. MNIST MLP RMSProp 14. IMDB FastText

CNTK References

• Python API Documentation: https://cntk.ai/pythondocs/cntk.html
• cntk.layers

• cntk.ops

• cntk.train.trainer

• cntk.learners

• cntk.losses

• cntk.metrics

• Stack OverFlow: http://stackoverflow.com/search?q=cntk (note CNTK tag)

https://cntk.ai/pythondocs/cntk.html
http://stackoverflow.com/search?q=cntk

Other Stuff to Check Out

• keras/examples/babi_memnn.py
• trains a memory network on the bAbI dataset for reading comprehension

• bAbI: "baby", with A.I. capitalized (https://research.fb.com/projects/babi/)

• AN4 Alphanumeric Data Classification
• git clone https://github.com/Microsoft/CNTK.git

• cd CNTK/Examples/Speech/AN4/Python

• python HTK_LSTM_Truncated_Distributed.py

• Kaggle competitions
• Ensembling of diverse models; e.g. an ensemble that includes both a wide,

shallow network and a narrow, deep network

https://research.fb.com/projects/babi/

References

• Applied Deep Learning
• https://www.manning.com/books/deep-learning-with-python
• https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

• Theoretical Deep Learning
• http://www.deeplearningbook.org/

• Applied Machine Learning
• http://www.statlearning.com/
• http://statweb.stanford.edu/~tibs/ElemStatLearn/

• Theoretical Machine Learning
• https://mitpress.mit.edu/books/machine-learning-0

https://www.manning.com/books/deep-learning-with-python
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras
http://www.deeplearningbook.org/
http://www.statlearning.com/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
https://mitpress.mit.edu/books/machine-learning-0

Appendix Material

Derivative of a Sigmoid Function

From the Simple MLP Example …

