



# Using CNTK's Python Interface for Deep Learning

dave.debarr (at) gmail.com

slides @ http://cross-entropy.net/PyData

2017-07-05

What drop out called it "deep learning hype" instead of "backpropaganda"? -- Naomi Saphra / ML Hipster: <u>https://twitter.com/ML Hipster/status/729487995816935425</u>





# Topics to be Covered

- Cognitive Toolkit (CNTK) installation
- What is "machine learning"? [gradient descent example]
- What is "learning representations"?
- Why do Graphics Processing Units (GPUs) help?
- How do we prevent overfitting?
- CNTK Packages and Modules
- Deep learning examples, including Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) examples





# What is "Machine Learning"?

- Using data to create a model to map one-or-more input values to one-or-more output values
- Interest from many groups
  - Computer scientists: "machine learning"
  - Statisticians: "statistical learning"
  - Engineers: "pattern recognition"





# Example Applications

- Object detection
- Speech recognition
- Translation
- Natural language processing
- Recommendations
- Genomics
- Advertising
- Finance
- Security



# Relationships





http://www.deeplearningbook.org/contents/intro.html





#### Output Mapping from Output Output features Additional Mapping from Mapping from layers of more Output features features abstract features Hand-Hand-Simple designed designed Features features program features Input Input Input Input Deep Classic learning Rule-based machine systems Representation learning learning

# What is Deep Learning?

http://www.deeplearningbook.org/contents/intro.html





# Machine Learning Taxonomy

- Supervised Learning: output is provided for observations used for training
  - Classification: the output is a categorical label [our focus for today is discriminative, parametric models]
  - Regression: the output is a numeric value
- Unsupervised Learning: output is not provided for observations used for training (e.g. customer segmentation)
- Semi-Supervised Learning: output is provided for some of the observations used for training
- Reinforcement Learning: rewards are provided to provide positive or negative reinforcement, with exploration used to seek an optimal mapping from states to actions (e.g. games)





# A Word (or Two) About Tensors

- A tensor is just a generalization of an array
- Scalar: a value [float32 often preferred for working with Nvidia GPUs]
- Vector: a one-dimensional array of numbers
- Matrix: a two-dimensional array of numbers
- Tensor: may contain three or more dimensions
  - Array of images with Red Green Blue (RGB) channels
  - Array of documents with each word represented by an "embedding"





# A Word (or Two) About Dot Products

• The "dot product" between 2 vectors (one-dimensional arrays of numeric values) is defined as the sum of products for the elements:

$$\mathbf{a}\cdot\mathbf{b}=\sum_{i=1}^na_ib_i=a_1b_1+a_2b_2+\dots+a_nb_n$$

- The dot product measures the similarity between the two vectors
- The dot product is an unnormalized version of the cosine of the angle between two vectors, where the cosine takes on the maximum value of +1 if the two vectors "point" in the same direction; or the cosine takes on the minimum value of -1 if the two vectors "point" in opposite directions





# Getting Access to a Platform with a GPU

- Graphics Processing Units (GPUs) often increase the speed of tensor manipulation by an order of magnitude, because deep learning consists of lots of easily parallelized operations (e.g. matrix multiplication)
- GPUs often have thousands of processors, but they can be expensive
  - If you're just playing for a few hours, Azure is probably the way to go [rent someone else's GPU]
  - If you're a recurring hobbyist, consider buying an Nvidia card (cores; memory)
    - GTX 1050 Ti (768; 4GB): \$150 [no special power requirements]
    - GTX 1070 (1920; 8GB): \$400 [requires a separate power connector]
    - GTX 1080 Ti (3584; 11GB): \$700
    - Titan Xp (3840; 12GB): \$1200

• Will cover Azure VM here: don't forget to delete it when you're done!





#### Nvidia GTX 1080 Ti Card

In case you're buying a card ...

Fits in Peripheral Component Interconnect (PCI) Express x16 slot; but ... fancier cards require separate power connectors



PyData

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/ https://azure.microsoft.com/en-us/regions/services/ [NC6 (Ubuntu): \$0.9/hour]



#### Azure: Sign In



https://portal.azure.com/

![](_page_12_Picture_0.jpeg)

# Select "Virtual machines" (on the left)

![](_page_12_Picture_2.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

# Select "Create Virtual machines"

![](_page_13_Picture_3.jpeg)

![](_page_14_Picture_0.jpeg)

## Select "Ubuntu Server"

![](_page_14_Picture_2.jpeg)

![](_page_15_Picture_0.jpeg)

# Select "Ubuntu Server 16.04 LTS"

![](_page_15_Picture_2.jpeg)

#### LTS: Long Term Support

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

# Configure the Virtual Machine

![](_page_17_Picture_3.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

# Select "NC6" Virtual Machine (VM)

| ₽ €             | 👍 Choose     | e a size - Microsc 🗙 🕂 🕚                | ~             |                |                                                 |       |                                          |     |                            | —                         |                | × |
|-----------------|--------------|-----------------------------------------|---------------|----------------|-------------------------------------------------|-------|------------------------------------------|-----|----------------------------|---------------------------|----------------|---|
| $\leftarrow$ -  | $\heartsuit$ | û │ A portal.azure                      | .com/#create/ | /Canonica      | al.UbuntuServer1604LTS-,                        | ARM   |                                          |     | ☆│ ≡                       | h                         | È              |   |
| Micro           | osoft Azı    | Ire 《 Create virtual mac                | hine > Cho    | oose a siz     | e 🎾                                             | l C   | ⊋ ≻_  ☺                                  | ?   | dave.del<br>DAVEDEBA       | oarr@gm<br>RRGMAIL (D     | ail.c<br>EFAUL |   |
|                 | Create       | virtual machine                         |               | Choo<br>Browse | DSE a SIZE<br>the available sizes and their fea | tures |                                          |     |                            |                           | ×              |   |
| +               | 1            | Racics                                  |               | NC6            | Standard                                        | NC1   | <b>2</b> Standard                        | NC2 | 4 Standard                 |                           | ^              |   |
|                 | I            | Done                                    | \[            | 6              | Cores                                           | 12    | Cores                                    | 24  | Cores                      |                           |                |   |
|                 |              |                                         |               | 56             | GB                                              | 112   | GB                                       | 224 | GB                         |                           |                |   |
|                 | 2            | Size<br>Choose virtual machine size     | >             |                | Data disks<br>8x500                             |       | Data disks 16x500                        |     | Data disks<br>32x500       |                           |                |   |
| 8               |              |                                         |               |                | Max IOPS<br>380 GB<br>Local SSD                 |       | Max IOPS<br>680 GB                       |     | Max IOPS<br>1440 GB        |                           |                |   |
| <u> </u>        | 3            | Settings<br>Configure optional features | >             |                | Load balancing                                  |       | Load balancing                           | -   | Load balanci               | ng                        |                |   |
| -               |              | Comgure optional realthes               |               |                | 1x K80<br>Graphics                              | 0     | 2x K80<br>Graphics                       | 0   | 4x K80<br>Graphics         |                           |                |   |
| SQL             | Δ            | Summary                                 |               |                |                                                 |       |                                          |     |                            |                           |                |   |
| <b>*</b>        |              | Ubuntu Server 16.04 LTS                 |               |                | 669.60<br>USD/MONTH (ESTIMATED)                 |       | <b>1,339.20</b><br>USD/MONTH (ESTIMATED) |     | <b>2,6</b><br>USD/MONTH (E | <b>78.40</b><br>STIMATED) |                |   |
| <u>.</u>        |              |                                         |               | NC2            | 4R Standard                                     | F1S   | Standard                                 | F2S | Standard                   |                           |                |   |
| <b>\</b>        |              |                                         |               | 24             | Cores                                           | 1     | Core                                     | 2   | Cores                      |                           |                |   |
|                 |              |                                         |               | 224            | GB                                              | 2     | GB                                       | 4   | GB                         |                           |                |   |
| <b>&lt;&gt;</b> |              |                                         |               | 8              | Data disks                                      | 8     | Z<br>Data disks<br>3200                  | 8   | 4<br>Data disks<br>6400    |                           |                |   |
|                 |              |                                         |               |                | Max IOPS<br>1440 GB                             |       | Max IOPS                                 |     | Max IOPS                   | na                        |                |   |
|                 |              |                                         |               |                | Local SSD                                       |       | Premium disk support                     |     | Premium disk               | support                   |                |   |
| •               |              |                                         | -             |                |                                                 |       |                                          |     |                            |                           | ~              |   |
| <b>•</b>        |              |                                         |               | S              | elect                                           |       |                                          |     |                            |                           |                |   |
| >               | <            |                                         |               |                |                                                 |       |                                          |     |                            |                           |                |   |

![](_page_20_Picture_0.jpeg)

# Configure "Settings"

ata

![](_page_20_Picture_2.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

# Take Note of "Public IP address"

| 🗄 🖅 🗢 Dashboard - Microsoft . 🗙 🕂 🗸                                              |                                                                  | - 🗆 X                                                                 |  |  |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| $\dot{\leftarrow}$ $ ightarrow$ $\dot{\circlearrowright}$ $ert$ portal.azure.com | v/#resource/subscriptions/c6fa29e5-543d-4498-8269-e1be           | 321f0ae5/resc 🔟 🕁 😑 🔍 🖄 …                                             |  |  |  |  |
| Microsoft Azure dadebarr-azure                                                   | , Ф <u></u>                                                      | _ லே ⑦ dave.debarr@gmail.c<br>Davedebarrgmail (DeFaul                 |  |  |  |  |
| ≡ dadebarr-azure                                                                 |                                                                  |                                                                       |  |  |  |  |
| ← <i>Search (Ctrl+/)</i>                                                         | 🏎 Connect 🕨 Start 🍳 Restart 🔳 Stop 🕃                             | Capture → Move 💼 Delete 🖸 Refresh                                     |  |  |  |  |
| Cverview                                                                         | Cverview Essentials ^                                            |                                                                       |  |  |  |  |
| Activity log                                                                     | Resource group (change)<br>dadebarr-resources                    | Computer name<br>dadebarr-azure                                       |  |  |  |  |
| Access control (IAM)                                                             | Status<br>Running                                                | Operating system<br>Linux                                             |  |  |  |  |
| 🏷 🕜 Tags                                                                         | West US 2                                                        | Size<br>Standard NC6 (6 cores, 56 GB memory)                          |  |  |  |  |
| Diagnose and solve problems                                                      | Subscription (change)<br>Pay-As-You-Go                           | Public IP address<br>52.175.250.225                                   |  |  |  |  |
| SETTINGS                                                                         | Subscription ID<br>c6fa29e5-543d-4498-8269-e1be321f0ae5          | Virtual network/subnet<br>dadebarr-resources-vnet/default<br>DNS name |  |  |  |  |
| 🔅 🧖 Availability set                                                             | -                                                                |                                                                       |  |  |  |  |
| 🖸 😂 Disks                                                                        | Show data for last: 1 hour 6 hours 12 hours 1 day 7 days 30 days |                                                                       |  |  |  |  |
| Textensions                                                                      |                                                                  |                                                                       |  |  |  |  |
| Network interfaces                                                               | CPU (average) 🖉 🖈                                                | Network (total)                                                       |  |  |  |  |
| Size                                                                             | 100%                                                             | 1008                                                                  |  |  |  |  |
| Backup                                                                           | 50%                                                              | 508                                                                   |  |  |  |  |
| Properties                                                                       |                                                                  |                                                                       |  |  |  |  |
| Cocks                                                                            | 0%                                                               | 0B                                                                    |  |  |  |  |
| Automation script                                                                | 12:15 PM 12:30 PM 12:45 PM 1 PM                                  | 12:15 PM 12:30 PM 12:45 PM 1 PM                                       |  |  |  |  |
| >                                                                                |                                                                  |                                                                       |  |  |  |  |

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

# Install Support Software

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/n-series-driver-setup#install-cuda-drivers-for-nc-vms

- Download PuTTY [secure shell (ssh) software: optional (client)]
  - <a>ftp://ftp.chiark.greenend.org.uk/users/sgtatham/putty-latest/w32/putty-0.69-installer.msi</a>
  - When using ssh, check the "Connection > SSH> X11: Enable X11 Forwarding" option
- Download Xming X Server for Windows [optional (client)]
  - <u>https://sourceforge.net/projects/xming/files/latest/download</u>
- Configure the Nvidia driver [required (server)]

CUDA\_REPO\_PKG=cuda-repo-ubuntu1604\_8.0.61-1\_amd64.deb wget -O /tmp/\${CUDA\_REPO\_PKG} \ http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86\_64/\${CUDA\_REPO\_PKG} sudo dpkg -i /tmp/\${CUDA\_REPO\_PKG} rm -f /tmp/\${CUDA\_REPO\_PKG} sudo apt-get update sudo apt-get install cuda-drivers sudo apt-get install cuda

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

# nvidia-smi

| dadebarr@dadebarr-azure:~\$ nvidia-smi<br>Sun Jul 2 20:50:59 2017                              |                                           |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|
| NVIDIA-SMI 375.66 Driver Version: 375.66                                                       |                                           |  |  |  |  |  |
| GPU Name Persistence-M  Bus-Id Disp.A   Vo<br>  Fan Temp Perf Pwr:Usage/Cap  Memory-Usage   GP | latile Uncorr. ECC  <br>U-Util Compute M. |  |  |  |  |  |
| 0 Tesla K80 0ff   A2B4:00:00.0 0ff  <br>  N/A 39C P0 72W / 149W   0MiB / 11439MiB              | 0  <br>0% Default                         |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                          | ++                                        |  |  |  |  |  |
| Processes:<br>  GPU PID Type Process name                                                      | GPU Memory  <br>Usage                     |  |  |  |  |  |
| No running processes found<br>+                                                                |                                           |  |  |  |  |  |

NC6 has access to one of the two Nvidia K80 GPUs: 2496 cores; 12 GB memory https://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf

SMI: System Management Interface

![](_page_25_Picture_0.jpeg)

#### Logistic Regression Tutorial Example <u>https://gallery.cortanaintelligence.com/Collection/Cognitive-Toolkit-Tutorials-Collection</u>

ta

![](_page_25_Figure_2.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

# Logistic Regression

- Logistic regression is a shallow, linear model
  - Consists of a single "layer" with a single "sigmoid" activation function
  - Cross entropy is used as a loss function: the objective function used to drive "training" (i.e. updating the weights)
- We will use Stochastic Gradient Descent (SGD) in our example today, because this is the core learning method used for training deep learning models; but most "logistic regression" packages use a method known as Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization [an approximation of Iteratively Reweighted Least Squares (IRLS)]

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

# The Logistic Regression Model

The "sigmoid" function is used to map input features to a predicted probability of class membership  $= \frac{1}{1 + exp(-x^T w)}$ 

... where ...

- $x^T w$  is a "dot product", a measure of the similarity between two vectors; an unnormalized measure of the cosine of the angle between the feature vector and the model's weight vector [the weight vector points in the direction of the "positive" class]
- $\hat{p}$  is an estimate of the probability that the input vector belongs to the positive class

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

# Learning by Gradient Descent

- The gradient of the loss function is used to update the weights of the model
- The gradient of the loss function tells us how to maximize the loss function, so the negative of the gradient is used to minimize the loss function

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

# The Cross Entropy Loss Function

- This function is used to measure the dissimilarity between two distributions
- In the context of evaluating pattern recognition models, we are using this function to measure the dissimilarity of the target class indicator and the predicted probability for the target class

$$logloss = -rac{1}{N}\sum_{i=1}^N\sum_{j=1}^M y_{i,j}\log(p_{i,j})$$

![](_page_30_Picture_0.jpeg)

# Gradient Descent for Logistic Regression (1/4)

The cross entropy function, the function used for evaluating the quality of a prediction, can be expressed as ...

![](_page_30_Figure_3.jpeg)

$$y_i = \{-1, +1\}$$
  
 $y_i^* = \frac{y_i + 1}{2}$ 

![](_page_30_Picture_5.jpeg)

![](_page_31_Picture_0.jpeg)

# Gradient Descent for Logistic Regression (2/4)

The derivative of the loss function with respect to a parameter indicates how to update a weight to optimize the loss function ...

$$\nabla_{\mathbf{w}} \log \left( \mathbf{1} + \exp \left( -y_i \mathbf{x}_i^{T} \mathbf{w} \right) \right)$$
$$= \left[ \frac{\partial}{\partial w_1} \log \left( \mathbf{1} + \exp \left( -y_i \mathbf{x}_i^{T} \mathbf{w} \right) \right) \cdots \frac{\partial}{\partial w_p} \log \left( \mathbf{1} + \exp \left( -y_i \mathbf{x}_i^{T} \mathbf{w} \right) \right) \right]$$

[the machine "learns" by updating the weights to minimize the loss function]

![](_page_31_Picture_5.jpeg)

![](_page_32_Picture_0.jpeg)

# Gradient Descent for Logistic Regression (3/4)\*

So we update a weight by subtracting the product of the input feature value and the difference between the predicted probability and the class membership indicator ...

$$\frac{\partial}{\partial w_{i}}\log\left(1+\exp\left(-y_{i}\hat{f}\left(x_{i}\right)\right)\right)$$

$$=\frac{\partial}{\partial \hat{f}\left(x_{i}\right)}\log\left(1+\exp\left(-y_{i}\hat{f}\left(x_{i}\right)\right)\right)\frac{\partial}{\partial w_{i}}\hat{f}\left(x_{i}\right)$$

$$=\frac{\partial}{\partial \hat{f}\left(x_{i}\right)}\log\left(1+\exp\left(-y_{i}\hat{f}\left(x_{i}\right)\right)\right)\frac{\partial}{\partial w_{i}}x_{i}w_{i}$$

$$=\left(\frac{1}{1+\exp\left(-y_{i}\hat{f}\left(x_{i}\right)\right)}-y_{i}^{*}\right)x_{i}$$

![](_page_32_Picture_4.jpeg)

![](_page_33_Picture_0.jpeg)

# Gradient Descent for Logistic Regression (4/4)\*

Showing steps of differentiation for completeness ...

$$\frac{\partial}{\partial \hat{f}(x_i)} \log\left(1 + \exp\left(-y_i \hat{f}(x_i)\right)\right)$$

$$= \frac{1}{1 + \exp\left(-y_i \hat{f}(x_i)\right)} \left(\frac{\partial}{\partial \hat{f}(x_i)} 1 + \frac{\partial}{\partial \hat{f}(x_i)} \exp\left(-y_i \hat{f}(x_i)\right)\right)$$

$$= \frac{1}{1 + \exp\left(-y_i \hat{f}(x_i)\right)} \left(0 + \exp\left(-y_i \hat{f}(x_i)\right) \frac{\partial}{\partial \hat{f}(x_i)} \left(-y_i \hat{f}(x_i)\right)\right)$$

$$= \frac{1}{1 + \exp\left(-y_i \hat{f}(x_i)\right)} \left(0 + \exp\left(-y_i \hat{f}(x_i)\right) \left(-y_i\right)\right)$$

 $= -y_i \frac{\exp\left(-y_i \hat{f}(x_i)\right)}{1 + \exp\left(-y_i \hat{f}(x_i)\right)}$  $= -y_i \frac{1}{1 + \exp\left(y_i \hat{f}\left(x_i\right)\right)}$  $= -y_i \left( 1 - \frac{1}{1 + \exp\left(-y_i \hat{f}\left(x_i\right)\right)} \right)$  $=\frac{1}{1+\exp\left(-y_{i}\hat{f}\left(x_{i}\right)\right)}-y_{i}^{*}$ 

![](_page_33_Picture_6.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

### Logistic Regression Example

![](_page_34_Figure_3.jpeg)

![](_page_35_Picture_0.jpeg)

# Simple SGD in Python

- \$HOME/anaconda3/bin/jupyter notebook
- <u>http://cross-entropy.net/PyData/</u>
- 01\_SGD.ipynb

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

# Stratifying Gradient Descent

- Stochastic Gradient Descent (SGD): a randomly selected training set observation is used to update the weights of the model
- Batch Gradient Descent: all training set observations are used to update the weights of the model [better updates but more computationally intensive than SGD]
- Mini-Batch Stochastic Gradient Descent: a subset of the training set is used to update the weights of the model [a compromise; this is the most popular version]

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

# Multi-Layer Perceptron (MLP) Example

![](_page_37_Figure_3.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

# Simple MLP in Python

• 02\_Backpropagation.ipynb

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

# Backpropagation Description

After the forward computation, compute the gradient on the output layer:

 $\begin{array}{l} \boldsymbol{g} \leftarrow \nabla_{\hat{\boldsymbol{y}}} J = \nabla_{\hat{\boldsymbol{y}}} L(\hat{\boldsymbol{y}}, \boldsymbol{y}) \\ \mathbf{for} \ k = l, l-1, \ldots, 1 \ \mathbf{do} \end{array}$ 

Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise):  $\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J = \boldsymbol{g} \odot f'(\boldsymbol{a}^{(k)})$ Compute gradients on weights and biases (including the regularization term, where needed):

$$\begin{split} \nabla_{\boldsymbol{b}^{(k)}} J &= \boldsymbol{g} + \lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\boldsymbol{\theta}) \\ \nabla_{\boldsymbol{W}^{(k)}} J &= \boldsymbol{g} \ \boldsymbol{h}^{(k-1)\top} + \lambda \nabla_{\boldsymbol{W}^{(k)}} \Omega(\boldsymbol{\theta}) \\ \text{Propagate the gradients w.r.t. the next lower-level hidden layer's activations:} \\ \boldsymbol{g} \leftarrow \nabla_{\boldsymbol{h}^{(k-1)}} J &= \boldsymbol{W}^{(k)\top} \ \boldsymbol{g} \\ \text{end for} \end{split}$$

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Binary-Manual

sudo apt-get install openmpi-bin

wget https://repo.continuum.io/archive/Anaconda3-4.1.1-Linux-x86\_64.sh

/bin/bash Anaconda3-4.1.1-Linux-x86\_64.sh

[press Enter]

[press the spacebar]

[Enter "yes" to access the license terms]

[press Enter to accept the default directory for installation: \$HOME/anaconda3]

[Enter "yes" to prepend python to your program search path: \$HOME/anaconda3/bin] pip install https://cntk.ai/PythonWheel/GPU/cntk-2.0-cp35-cp35m-linux\_x86\_64.whl sudo apt-get install chromium-browser

![](_page_41_Picture_0.jpeg)

## MLP Example

• 03\_MLP\_CNTK.ipynb

![](_page_41_Picture_3.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

### Learning Representations

- You could turn the classification problem from the Simple MLP Example into a linearly separable problem by manually generating an interaction feature (input1 \* input2); but it's convenient to have the computer do the work for us (as shown in the Simple MLP Example)
- Deep learning models, neural networks with more than one hidden layer, allow the computer to create a hierarchy of features
- For perceptual problems, such as computer vision and speech recognition, deep learning is providing features that make the model's performance comparable to a human's performance (for the specified task)

![](_page_43_Picture_0.jpeg)

#### **Activation Functions**

ata

![](_page_43_Figure_2.jpeg)

![](_page_44_Picture_0.jpeg)

#### Why Consider Keras? We didn't find results for "CNTK" in Books.

![](_page_44_Picture_2.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

### Install Keras

git clone https://github.com/fchollet/keras cd keras python setup.py install export KERAS\_BACKEND=cntk cd examples python mnist\_mlp.py

Documentation: <u>https://keras.io/</u> git clone <u>https://github.com/PacktPublishing/Deep-Learning-with-Keras.git</u>

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

#### **MNIST** Data

Modified National Institutes of Standards and Technology data: <u>http://yann.lecun.com/exdb/mnist/</u> <u>http://yann.lecun.com/exdb/lenet/</u>

| 률 dadebarr@dadebarr-azure: ~ 🚽 🚽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| ladebarr@dadebarr-azure:~\$ python                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∧ 🕅 🧏 Figure 1 – □ × |  |  |  |  |  |
| yython 3.5.2 [Anaconda 4.1.1 (64-bit)] (default, Jul 2 2016, 17:53:06)<br>1600 A 4 7 20120313 (Bed Hat A 4 7-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| ype "help", "copyright", "credits" or "license" for more information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |  |
| >>> from keras.datasets import mnist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |  |
| Jaing CNTK backend<br>Selected GPU[0] Tesla K80 as the process wide default device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |  |
| >> import matplotlib.pyplot as plt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |  |
| >>> import numpy as np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |  |  |  |  |  |
| <pre>&gt;&gt; (X_train, y_train), (X_test, y_test) = mnist.load_data() &gt;&gt; X_train_shape</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o F                  |  |  |  |  |  |
| 6000, 28, 28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |  |  |  |  |  |
| >>> y_train.shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |  |  |
| (6000))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |  |  |  |  |
| 10000, 28, 28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |  |  |  |  |
| >>> y_test.shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                    |  |  |  |  |  |
| (10000,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |  |  |  |  |  |
| (10, 10) = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 110 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| 0         0         0         12         99         91         142         155         155         155         131         52         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |  |  |
| [ 0 0 0 138 254 254 254 254 254 254 254 254 254 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |  |  |
| 0 0 0 220 254 254 254 235 189 189 189 185 185 189 205 254 254 254 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 0 0 0 6 152 246 254 254 49 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 0 0 0 0 66 158 254 254 249 103 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 0 0 58 181 234 254 254 254 254 254 254 252 140 22 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 50 73 155 253 254 254 254 254 191 2 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 0 0 25 126 86 0 0 0 0 0 0 3 188 254 254 250 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| <b>1 0 0 0 0 0 0 0 101</b> 254 254 254 205 190 190 205 254 254 254 254 242 67 <b>0 0 0 0 0 0 0 0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |  |
| [ 0 0 0 0 0 0 0 33 166 254 254 254 254 254 254 254 254 255 138 55 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 5 10 15 20 25      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |
| >> plt.imshow(X_train[12], cmap=plt.cm.binary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |  |  |  |  |
| matpiotiib.image.Axesimage object at UX/i/i92628208>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |  |
| () perblow()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |  |  |

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

- 04\_MNIST\_LR.ipynb
- 05\_MNIST\_MLP.ipynb
- 06\_MNIST\_MLP\_Dropout.ipynb
- 07\_MNIST\_MLP\_RMSProp.ipynb
- 08\_MNIST\_CNN.ipynb

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

#### Convolution Example

![](_page_48_Figure_3.jpeg)

The output response map quantifies the filter's response at locations within the image

http://intellabs.github.io/RiverTrail/tutorial/

= 13.

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

## CIFAR 10 Data

airplane automobile bird cat deer dog frog horse ship truck

Canadian Institute For Advanced Research (CIFAR): http://rodrigob.github.io/are\_we\_there\_yet/build/classification\_datasets\_results.html

![](_page_49_Picture_5.jpeg)

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_1.jpeg)

• 09\_CIFAR10\_CNN.ipynb

![](_page_51_Picture_0.jpeg)

#### Text Classification

- 10\_Reuters\_MLP.ipynb
- 11\_Newsgroups\_GloVe\_CNN.ipynb

word2vec embeddings

![](_page_51_Figure_5.jpeg)

Global Vector (GloVe) embeddings

![](_page_51_Figure_7.jpeg)

Example: embedding(king) - embedding(man) + embedding(woman) == embedding(queen)

![](_page_51_Picture_9.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

#### Simple Recurrent Neural Network Example

![](_page_52_Figure_3.jpeg)

#### http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

#### Long Short-Term Memory (LSTM) Cell

![](_page_53_Figure_3.jpeg)

$$\begin{aligned} \mathbf{i}_{(t)} &= \sigma \Big( \mathbf{W}_{xi}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hi}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{i} \Big) \\ \mathbf{f}_{(t)} &= \sigma \Big( \mathbf{W}_{xf}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hf}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{f} \Big) \\ \mathbf{o}_{(t)} &= \sigma \Big( \mathbf{W}_{xo}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{ho}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{o} \Big) \\ \mathbf{g}_{(t)} &= \tanh \Big( \mathbf{W}_{xg}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hg}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{g} \Big) \\ \mathbf{c}_{(t)} &= \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)} \\ \mathbf{y}_{(t)} &= \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh \Big( \mathbf{c}_{(t)} \Big) \end{aligned}$$

Hands-On Machine Learning with Scikit-Learn and TensorFlow

![](_page_54_Picture_0.jpeg)

# Text Continued

- 12\_IMDB\_LSTM.ipynb
- 13\_IMDB\_LSTM\_Bidirectional.ipynb
- 14\_IMDB\_FastText.ipynb

![](_page_55_Picture_0.jpeg)

![](_page_55_Picture_1.jpeg)

#### Recap of Stuff We Covered

- Brief Intro
- Setting Up an Azure VM with a GPU; and installing GPU drivers, CNTK, and Keras
- Bunch of Examples, including both Feedforward and Recurrent Neural Networks

| 1. SGD               | 8. MNIST CNN                |
|----------------------|-----------------------------|
| 2. Backpropagation   | 9. CIFAR10 CNN              |
| 3. MLP CNTK          | 10. Reuters MLP             |
| 4. MNIST LR          | 11. Newsgroups GloVe CNN    |
| 5. MNIST MLP         | 12. IMDB LSTM               |
| 6. MNIST MLP Dropout | 13. IMDB LSTM Bidirectional |
| 7. MNIST MLP RMSProp | 14. IMDB FastText           |

![](_page_56_Picture_0.jpeg)

![](_page_56_Picture_1.jpeg)

## **CNTK** References

- Python API Documentation: <a href="https://cntk.ai/pythondocs/cntk.html">https://cntk.ai/pythondocs/cntk.html</a>
  - cntk.layers
  - cntk.ops
  - cntk.train.trainer
  - cntk.learners
  - cntk.losses
  - cntk.metrics
- Stack OverFlow: <u>http://stackoverflow.com/search?q=cntk</u> (note CNTK tag)

![](_page_57_Picture_0.jpeg)

![](_page_57_Picture_1.jpeg)

# Other Stuff to Check Out

- keras/examples/babi\_memnn.py
  - trains a memory network on the bAbI dataset for reading comprehension
  - bAbI: "baby", with A.I. capitalized (<u>https://research.fb.com/projects/babi/</u>)
- AN4 Alphanumeric Data Classification
  - git clone https://github.com/Microsoft/CNTK.git
  - cd CNTK/Examples/Speech/AN4/Python
  - python HTK\_LSTM\_Truncated\_Distributed.py
- Kaggle competitions
  - Ensembling of diverse models; e.g. an ensemble that includes both a wide, shallow network and a narrow, deep network

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

# References

- Applied Deep Learning
  - <u>https://www.manning.com/books/deep-learning-with-python</u>
  - <u>https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras</u>
- Theoretical Deep Learning
  - <u>http://www.deeplearningbook.org/</u>
- Applied Machine Learning
  - <u>http://www.statlearning.com/</u>
  - <u>http://statweb.stanford.edu/~tibs/ElemStatLearn/</u>
- Theoretical Machine Learning
  - <u>https://mitpress.mit.edu/books/machine-learning-0</u>

![](_page_59_Picture_0.jpeg)

![](_page_59_Picture_1.jpeg)

# Appendix Material

![](_page_60_Picture_0.jpeg)

![](_page_60_Picture_1.jpeg)

From the Simple MLP Example ...

$$\begin{aligned} \frac{\partial}{\partial \hat{f}(x)} \frac{1}{1 + \exp\left(-\hat{f}(x)\right)} \\ &= -\frac{1}{\left(1 + \exp\left(-\hat{f}(x)\right)\right)^2} \frac{\partial}{\partial \hat{f}(x)} \left(1 + \exp\left(-\hat{f}(x)\right)\right) \\ &= -\frac{1}{\left(1 + \exp\left(-\hat{f}(x)\right)\right)^2} \left(\frac{\partial}{\partial \hat{f}(x)} 1 + \frac{\partial}{\partial \hat{f}(x)} \exp\left(-\hat{f}(x)\right)\right) \\ &= -\frac{1}{\left(1 + \exp\left(-\hat{f}(x)\right)\right)^2} \left(\Theta + \exp\left(-\hat{f}(x)\right) \frac{\partial}{\partial \hat{f}(x)} \left(-\hat{f}(x)\right)\right) \end{aligned}$$

$$= -\frac{1}{\left(1 + \exp\left(-\hat{f}(x)\right)\right)^2} \left(\exp\left(-\hat{f}(x)\right)(-1)\right)$$
$$= \frac{1}{\left(1 + \exp\left(-\hat{f}(x)\right)\right)^2} \exp\left(-\hat{f}(x)\right)$$
$$= \frac{1}{1 + \exp\left(-\hat{f}(x)\right)} \frac{\exp\left(-\hat{f}(x)\right)}{1 + \exp\left(-\hat{f}(x)\right)}$$
$$= \frac{1}{1 + \exp\left(-\hat{f}(x)\right)} \left(1 - \frac{1}{1 + \exp\left(-\hat{f}(x)\right)}\right)$$