
Deep Reinforcement Learning
December 8, 2022

ddebarr@uw.edu

http://cross-entropy.net/ML530/Deep_Learning_7.pdf

mailto:ddebarr@uw.edu
http://cross-entropy.net/ML530/Deep_Learning_7.pdf

[DLI] Game-Playing Machines

• Deep Learning, AI, and Other Beasts

• Three Categories of Machine Learning Problems

• Deep Reinforcement Learning

• Video Games

• Board Games

• Manipulation of Objects

• Popular Deep Reinforcement Learning Environments

• Three Categories of AI

• Summary

Venn Diagram of Concepts from Textbook

7 boundaries:
Artificial Intelligence
Machine Learning
Representation Learning
Deep Learning
Machine Vision
Natural Language Processing
Reinforcement Learning

Deep Learning, AI, and Other Beasts

Generalization of Deep Learning Architectures

Deep Learning, AI, and Other Beasts

Reinforcement Learning Loop

Three Categories of Machine Learning Problems

Demis Hassabis

Cofounder of DeepMind

Video Games

Deep Q(uality) Network
Performance
on Atari Games
[relative to game tester]

Video Games

Go Game Board

Objective is to encircle your opponent’s stones (capturing them)

Board Games

David Silver

Researcher at DeepMind

Board Games

Elo Score of AlphaGo

Beginner kyu [kai you]
Amateur dan
Professional dan

Example algorithm for Elo Rating:
1.For each win, add your opponent's rating plus 400,

2.For each loss, add your opponent's rating minus 400,

3.And divide this sum by the number of played games.

Fan Hui was the European Go Champion

Board Games

AlphaGo Zero versus AlphaGo

Lee Sedol was a world-champion Go player

Board Games

Alpha Zero Elo Ratings

Higher rating than opponent means you’re more likely to win

Board Games

Chelsea Finn

Professor of CSE at Stanford

Manipulation of Objects

Sample Images from Work of Finn et al

Manipulation of Objects

Sample of OpenAI Gym Environments

• CartPole

• LunarLander

• Skiing

• Humanoid
• MuJoCo

• Multi Joint dynamics with Contact

• FetchPickAndPlace

• HandManipulateBlock

Popular Deep Reinforcement Learning Environments

DeepMind Lab Environment

Popular Deep Reinforcement Learning Environments

Three Categories of AI

• ANI: Artificial Narrow Intelligence
Specifically trained for a task; e.g. text classification, image classification, object
detection, machine translation, speech recognition, question answering, games, etc.

• AGI: Artificial General Intelligence
Able to generalize; comparable to human intelligence

• ASI: Artificial Super Intelligence
https://www.nickbostrom.com/papers/survey.pdf

• “The median estimate of respondents was for a one-in-two chance that high-level machine
intelligence will be developed around 2040-2050, rising to a nine-in-ten chance by 2075”

• “1970s: … it was believed by some of the early pioneers of artificial intelligence and robotics
(at places such as MIT, Stanford, and CMU) that solving the 'visual input' problem would be an
easy step along the path to solving more difficult problems such as higher-level reasoning and
planning“: Richard Szeliski, in “Computer Vision: Algorithms and Applications”

• Be nice to Alexa … just in case ☺

Three Categories of AI

https://www.nickbostrom.com/papers/survey.pdf

Source: posted to the Memes/Cartoons channel for NeurIPS 2019

Summary

The chapter began with an overview relating deep learning to the
broader field of artificial intelligence. We then detailed deep
reinforcement learning, an approach that blends deep learning with
the feedback-providing reinforcement learning paradigm. As discussed
via real-world examples ranging from the board game Go to the
grasping of physical objects, such deep reinforcement learning enables
machines to process vast amounts of data and take sensible sequences
of actions on complex tasks, associating it with popular conceptions of
AI.

[DLI] Deep Reinforcement Learning

• Essential Theory of Reinforcement Learning

• Essential Theory of Deep Q-Learning Networks

• Defining a DQN Agent

• Interacting with an OpenAI Gym Environment

• Hyperparameter with SLM Lab

• Agents Beyond DQN

• Summary

Reinforcement Learning

• An agent taking an action within an environment (let’s say the action is taken at some timestep t)

• The environment returning two types of information to the agent:
• Reward: This is a scalar value that provides quantitative feedback on the action that the agent took at timestep t. This could,

for example, be 100 points as a reward for acquiring cherries in the video game Pac-Man. The agent’s objective is to maximize
the rewards it accumulates, and so rewards are what reinforce productive behaviors that the agent discovers under particular
environmental conditions.

• State: This is how the environment changes in response to an agent’s action. During the forthcoming timestep (t + 1), these
will be the conditions for the agent to choose an action in.

• Repeating the above two steps in a loop until reaching some terminal state. This terminal state could be
reached by, for example, attaining the maximum possible reward, attaining some specific desired
outcome (such as a self-driving car reaching its programmed destination), running out of allotted time,
using up the maximum number of permitted moves in a game, or the agent dying in a game.

• Reinforcement learning problems are sequential decision-making problems
• Atari video games, such as Pac-Man, Pong, and Breakout

• Autonomous vehicles, such as self-driving cars and aerial drones

• Board games, such as Go, chess, and shogi

• Robot-arm manipulation tasks, such as removing a nail with a hammer

Essential Theory of Reinforcement Learning

The Cart-Pole Game (control theory problem)

Essential Theory of Reinforcement Learning

Cart-Pole Game Termination

Essential Theory of Reinforcement Learning

RL Loop as a Markov Decision Process (MDP)

S: {cart position, cart velocity, pole angle, angular velocity for pole tip}
A: { left, right }
R: P(r|(st,a)) [always 1 for Cart-Pole]
P: P(st+1|(st,a))
lower-case gamma: discount [reward * (gamma**timesteps)]
For discount = 0.9:
• 100-point reward 1 time-step away is 100*(0.9**1) = 90 points
• 100-point reward 20 time-steps is 100*(0.9**20) = 12.2 points

Essential Theory of Reinforcement Learning

https://github.com/openai/gym/wiki/CartPole-v0

https://github.com/openai/gym/wiki/CartPole-v0

Immediate Reward Preferred (gamma = 0.9)

Trilobyte playing the role of pacman; octopus playing the role of ghost;
and fish playing the role of cherries

Essential Theory of Reinforcement Learning

Policy

Policy function (pi) maps a state to an action

The objective of an optimal policy is to maximize the expected discounted future reward

Essential Theory of Reinforcement Learning

Value and Quality-Value (Q-Value) Functions

•Vπ (s): maps a state to expected discounted future
reward

•Qπ (s,a): maps a state and an action to expected
discounted future reward
• A Deep ‘Q’ Network (DQN) is a deep network that

estimates Qπ (s,a): the quality of an action
• Exploitation: we select the action with the maximum

expected discounted future reward
• Exploration: we randomly select an action

Essential Theory of Deep Q-Learning Networks

Richard Sutton

Professor at the University of Alberta [also research scientist at DeepMind]

http://bit.ly/SuttonBarto

Essential Theory of Deep Q-Learning Networks

http://bit.ly/SuttonBarto

DQN Agent Dependencies

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

import os

Defining a DQN Agent

Cart-Pole DQN Hyperparameters

env = gym.make('CartPole-v0')

state_size = env.observation_space.shape[0]

action_size = env.action_space.n

batch_size = 32

n_episodes = 1000

output_dir = 'model_output/cartpole/'

if not os.path.exists(output_dir):

os.makedirs(output_dir)

Defining a DQN Agent

DQN Agent: Part 1

class DQNAgent:

def __init__(self, state_size, action_size):

self.state_size = state_size

self.action_size = action_size

self.memory = deque(maxlen=2000)

self.gamma = 0.95

self.epsilon = 1.0

self.epsilon_decay = 0.995

self.epsilon_min = 0.01

self.learning_rate = 0.001

self.model = self._build_model()

def _build_model(self):

model = Sequential()

model.add(Dense(32, activation='relu',

input_dim=self.state_size))

model.add(Dense(32, activation='relu'))

model.add(Dense(self.action_size, activation='linear'))

model.compile(loss='mse',

optimizer=Adam(lr=self.learning_rate))

return model

def remember(self, state, action, reward, next_state, done):

self.memory.append((state, action,

reward, next_state, done))

Defining a DQN Agent

DQN Agent: Part 2

def train(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for state, action, reward, next_state, done in minibatch:

target = reward # if done

if not done:

target = (reward +

self.gamma *

np.amax(self.model.predict(next_state)[0]))

target_f = self.model.predict(state)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1, verbose=0)

if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay

def act(self, state):

if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)

act_values = self.model.predict(state)

return np.argmax(act_values[0])

def save(self, name):

self.model.save_weights(name)

def load(self, name):

self.model.load_weights(name)

target for action taken: reward plus discounted predicted value for next state

Defining a DQN Agent

Exploration versus Exploitation

Exploration:
• Choose random action

Exploitation:
• Choose “best” action

Defining a DQN Agent

Exploration versus Exploitation

• Epsilon Greedy Strategy
• Exploration: for a fixed probability 𝜖 [lowercase epsilon], we choose a move at

random
• Exploitation: for a fixed probability 1 − 𝜖, we choose the best move based on what

we’ve learned so far

• Epsilon Decreasing Strategy
• It is common to decrease epsilon over time

self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay

• Exploration-Exploitation Tradeoff: our choice of exploration probability can have a
large effect on how fast we learn the game [e.g. sacrificing our score for the current
game can help us to improve our later scores]

Defining a DQN Agent

Training

agent = DQNAgent(state_size, action_size)

for e in range(n_episodes):

state = env.reset()

state = np.reshape(state, [1, state_size])

done = False

time = 0

while not done:

env.render()

action = agent.act(state)

next_state, reward, done, _ = env.step(action)

reward = reward if not done else -10

next_state = np.reshape(next_state,

[1, state_size])

agent.remember(state, action, reward,

next_state, done)

state = next_state

if done:

print("episode: {}/{}, score: {}, e: {:.2}"

.format(e, n_episodes-1, time,

agent.epsilon))

time += 1

if len(agent.memory) > batch_size:

agent.train(batch_size)

if e % 50 == 0:

agent.save(output_dir + "weights_"

+ '{:04d}'.format(e) + ".hdf5")

Interacting with an OpenAI Gym Environment

An Experiment Run with SLM Lab
Strange Loop Machine (SLM) is an homage to Douglas Hofstadter’s exploration of human consciousness

Hyperparameter Optimization with SLM Lab

SLM Lab Results

• Fitness: an overall summary metric that takes
into account the other four metrics
simultaneously

• Strength: a measure of the cumulative reward
attained by the agent

• Speed: This is how quickly (i.e., over how
many episodes) the agent was able to reach
its strength

• Stability: a measure of how well it retained its
solution over subsequent episodes (after the
agent solved how to perform well in the
environment)

• Consistency: a measure of how reproducible
the performance of the agent was across
trials that had identical hyperparameter
settings

• Hyperparameters
• explore_anneal_epi: number of episodes to

decay epsilon from 1.0 to 0.01
• net_hidden_layers
• hidden_layers_activation
• optim_spec_lr (learning rate)

• Selected configuration
• a single hidden-layer architecture, with 64

neurons in that layer
• the tanh activation function
• a learning rate of ~0.02
• trials with an exploration rate that anneals over

10 episodes outperform trials that anneal over
50 or 100 episodes

Hyperparameter Optimization with SLM Lab

Categories of Deep RL Agents

Agents Beyond DQN

Beware of
“Faulty Reward Functions in the Wild”

https://www.alexirpan.com/2018/02/14/rl-hard.htmlhttps://openai.com/blog/faulty-reward-functions/

“Despite repeatedly catching on fire, crashing into other boats,
and going the wrong way on the track, our agent manages to
achieve a higher score using this strategy [repeatedly visiting
waypoints with rewards] than is possible by completing the
course in the normal way.”

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://openai.com/blog/faulty-reward-functions/

Deep RL Book

From the authors of SLM Lab: a deep reinforcement learning
framework for PyTorch …

Foundations of Deep Reinforcement Learning: Theory and Practice in
Python: https://www.amazon.com/dp/0135172381

https://www.amazon.com/dp/0135172381

Deep RL Book Algorithms

Policy-based Example:
https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py

Advantage (for A2C):

https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py

SLM-Lab

git clone https://github.com/kengz/SLM-Lab.git

cd SLM-Lab/

./bin/setup

conda activate lab

python run_lab.py slm_lab/spec/benchmark/dqn/dqn_pong.json dqn_pong dev

https://slm-lab.gitbook.io/slm-lab/analyzing-results/performance-metrics [time steps are called frames]

https://github.com/kengz/SLM-Lab.git
https://slm-lab.gitbook.io/slm-lab/analyzing-results/performance-metrics

Early:
lower
scores

Later:
higher
scores

pong state: (210, 160, 3) RGB image
16 environments
agent has green paddle

Summary

In this chapter, we covered the essential theory of reinforcement
learning, including Markov decision processes. We leveraged that
information to build a deep Q-learning agent that solved the Cart-Pole
environment. To wrap up, we introduced deep RL algorithms beyond
DQN such as REINFORCE and actor-critic. We also described SLM Lab—
a deep RL framework with existing algorithm implementations as well
as tools for optimizing agent hyperparameters.

Datasets Review

• Images (PIL)
• MNIST Digit Classification
• Fashion Accessory Classification
• CIFAR10 Image Classification
• Tiny ImageNet Classification (MAP)

• Text (spaCy, NLTK)
• Reuters MultiLabel Classification (Macro Averaged ROC AUC)
• Newsgroups Classification
• IMDB Review Sentiment Classification
• Penn TreeBank Language Modeling (Perplexity)

• Speech (libROSA)
• Google Commands

