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Venn Diagram of Concepts from Textbook

7 boundaries:
Artificial Intelligence
Machine Learning
Representation Learning
Deep Learning
Machine Vision
Natural Language Processing
Reinforcement Learning

Deep Learning, AI, and Other Beasts



Generalization of Deep Learning Architectures

Deep Learning, AI, and Other Beasts



Reinforcement Learning Loop

Three Categories of Machine Learning Problems



Demis Hassabis

Cofounder of DeepMind

Video Games



Deep Q(uality) Network 
Performance
on Atari Games
[relative to game tester]

Video Games



Go Game Board

Objective is to encircle your opponent’s stones (capturing them)

Board Games



David Silver

Researcher at DeepMind

Board Games



Elo Score of AlphaGo

Beginner kyu [kai you]
Amateur dan
Professional dan

Example algorithm for Elo Rating:
1.For each win, add your opponent's rating plus 400,

2.For each loss, add your opponent's rating minus 400,

3.And divide this sum by the number of played games.

Fan Hui was the European Go Champion

Board Games



AlphaGo Zero versus AlphaGo

Lee Sedol was a world-champion Go player

Board Games



Alpha Zero Elo Ratings

Higher rating than opponent means you’re more likely to win

Board Games



Chelsea Finn

Professor of CSE at Stanford

Manipulation of Objects



Sample Images from Work of Finn et al

Manipulation of Objects



Sample of OpenAI Gym Environments

• CartPole

• LunarLander

• Skiing

• Humanoid
• MuJoCo

• Multi Joint dynamics with Contact

• FetchPickAndPlace

• HandManipulateBlock

Popular Deep Reinforcement Learning Environments



DeepMind Lab Environment

Popular Deep Reinforcement Learning Environments



Three Categories of AI

• ANI: Artificial Narrow Intelligence
Specifically trained for a task; e.g. text classification, image classification, object 
detection, machine translation, speech recognition, question answering, games, etc.

• AGI: Artificial General Intelligence
Able to generalize; comparable to human intelligence

• ASI: Artificial Super Intelligence
https://www.nickbostrom.com/papers/survey.pdf

• “The median estimate of respondents was for a one-in-two chance that high-level  machine 
intelligence will be developed around 2040-2050, rising to a nine-in-ten chance by 2075”

• “1970s: … it was believed by some of the early pioneers of artificial intelligence and robotics 
(at places such as MIT, Stanford, and CMU) that solving the 'visual input' problem would be an 
easy step along the path to solving more difficult problems such as higher-level reasoning and 
planning“: Richard Szeliski, in “Computer Vision: Algorithms and Applications”

• Be nice to Alexa … just in case ☺

Three Categories of AI

https://www.nickbostrom.com/papers/survey.pdf


Source: posted to the Memes/Cartoons channel for NeurIPS 2019



Summary

The chapter began with an overview relating deep learning to the 
broader field of artificial intelligence.  We then detailed deep 
reinforcement learning, an approach that blends deep learning with 
the feedback-providing reinforcement learning paradigm.  As discussed
via real-world examples ranging from the board game Go to the 
grasping of physical objects, such deep reinforcement learning enables 
machines to process vast amounts of data and take sensible sequences 
of actions on complex tasks, associating it with popular conceptions of 
AI.
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Reinforcement Learning

• An agent taking an action within an environment (let’s say the action is taken at some timestep t)

• The environment returning two types of information to the agent:
• Reward: This is a scalar value that provides quantitative feedback on the action that the agent took at timestep t.  This could, 

for example, be 100 points as a reward for acquiring cherries in the video game Pac-Man.  The agent’s objective is to maximize 
the rewards it accumulates, and so rewards are what reinforce productive behaviors that the agent discovers under particular 
environmental conditions.

• State: This is how the environment changes in response to an agent’s action.  During the forthcoming timestep (t + 1), these 
will be the conditions for the agent to choose an action in.

• Repeating the above two steps in a loop until reaching some terminal state.  This terminal state could be 
reached by, for example, attaining the maximum possible reward, attaining some specific desired 
outcome (such as a self-driving car reaching its programmed destination), running out of allotted time, 
using up the maximum number of permitted moves in a game, or the agent dying in a game.

• Reinforcement learning problems are sequential decision-making problems
• Atari video games, such as Pac-Man, Pong, and Breakout

• Autonomous vehicles, such as self-driving cars and aerial drones

• Board games, such as Go, chess, and shogi

• Robot-arm manipulation tasks, such as removing a nail with a hammer

Essential Theory of Reinforcement Learning



The Cart-Pole Game (control theory problem)

Essential Theory of Reinforcement Learning



Cart-Pole Game Termination

Essential Theory of Reinforcement Learning



RL Loop as a Markov Decision Process (MDP)

S: {cart position, cart velocity, pole angle, angular velocity for pole tip}
A: { left, right }
R: P(r|(st,a))    [always 1 for Cart-Pole]
P: P(st+1|(st,a))
lower-case gamma: discount    [reward * (gamma**timesteps)]
For discount = 0.9:
• 100-point reward 1 time-step away is 100*(0.9**1) = 90 points
• 100-point reward 20 time-steps is 100*(0.9**20) = 12.2 points

Essential Theory of Reinforcement Learning

https://github.com/openai/gym/wiki/CartPole-v0

https://github.com/openai/gym/wiki/CartPole-v0


Immediate Reward Preferred (gamma = 0.9)

Trilobyte playing the role of pacman; octopus playing the role of ghost; 
and fish playing the role of cherries

Essential Theory of Reinforcement Learning



Policy

Policy function (pi) maps a state to an action

The objective of an optimal policy is to maximize the expected discounted future reward

Essential Theory of Reinforcement Learning



Value and Quality-Value (Q-Value) Functions

•Vπ (s): maps a state to expected discounted future 
reward

•Qπ (s,a): maps a state and an action to expected 
discounted future reward
• A Deep ‘Q’ Network (DQN) is a deep network that 

estimates Qπ (s,a): the quality of an action
• Exploitation: we select the action with the maximum 

expected discounted future reward
• Exploration: we randomly select an action

Essential Theory of Deep Q-Learning Networks



Richard Sutton

Professor at the University of Alberta [also research scientist at DeepMind]

http://bit.ly/SuttonBarto

Essential Theory of Deep Q-Learning Networks

http://bit.ly/SuttonBarto


DQN Agent Dependencies

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

import os

Defining a DQN Agent



Cart-Pole DQN Hyperparameters

env = gym.make('CartPole-v0')

state_size = env.observation_space.shape[0]

action_size = env.action_space.n

batch_size = 32

n_episodes = 1000

output_dir = 'model_output/cartpole/'

if not os.path.exists(output_dir):

os.makedirs(output_dir)

Defining a DQN Agent



DQN Agent: Part 1

class DQNAgent:

def __init__(self, state_size, action_size):

self.state_size = state_size

self.action_size = action_size

self.memory = deque(maxlen=2000)

self.gamma = 0.95

self.epsilon = 1.0

self.epsilon_decay = 0.995

self.epsilon_min = 0.01

self.learning_rate = 0.001

self.model = self._build_model()

def _build_model(self):

model = Sequential()

model.add(Dense(32, activation='relu',

input_dim=self.state_size))

model.add(Dense(32, activation='relu'))

model.add(Dense(self.action_size, activation='linear'))

model.compile(loss='mse',

optimizer=Adam(lr=self.learning_rate))

return model

def remember(self, state, action, reward, next_state, done):

self.memory.append((state, action,

reward, next_state, done))

Defining a DQN Agent



DQN Agent: Part 2

def train(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for state, action, reward, next_state, done in minibatch:

target = reward # if done

if not done:

target = (reward +

self.gamma *

np.amax(self.model.predict(next_state)[0]))

target_f = self.model.predict(state)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1, verbose=0)

if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay

def act(self, state):

if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)

act_values = self.model.predict(state)

return np.argmax(act_values[0])

def save(self, name):

self.model.save_weights(name)

def load(self, name):

self.model.load_weights(name)

target for action taken: reward plus discounted predicted value for next state

Defining a DQN Agent



Exploration versus Exploitation

Exploration:
• Choose random action

Exploitation:
• Choose “best” action

Defining a DQN Agent



Exploration versus Exploitation

• Epsilon Greedy Strategy
• Exploration: for a fixed probability 𝜖 [lowercase epsilon], we choose a move at 

random
• Exploitation: for a fixed probability 1 − 𝜖, we choose the best move based on what 

we’ve learned so far

• Epsilon Decreasing Strategy
• It is common to decrease epsilon over time

self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay

• Exploration-Exploitation Tradeoff: our choice of exploration probability can have a 
large effect on how fast we learn the game [e.g. sacrificing our score for the current 
game can help us to improve our later scores]

Defining a DQN Agent



Training

agent = DQNAgent(state_size, action_size)

for e in range(n_episodes):

state = env.reset()

state = np.reshape(state, [1, state_size])

done = False

time = 0

while not done:

# env.render()

action = agent.act(state)

next_state, reward, done, _ = env.step(action)

reward = reward if not done else -10

next_state = np.reshape(next_state,

[1, state_size])

agent.remember(state, action, reward,

next_state, done)

state = next_state

if done:

print("episode: {}/{}, score: {}, e: {:.2}"

.format(e, n_episodes-1, time,

agent.epsilon))

time += 1

if len(agent.memory) > batch_size:

agent.train(batch_size)

if e % 50 == 0:

agent.save(output_dir + "weights_"

+ '{:04d}'.format(e) + ".hdf5")

Interacting with an OpenAI Gym Environment



An Experiment Run with SLM Lab
Strange Loop Machine (SLM) is an homage to Douglas Hofstadter’s exploration of human consciousness

Hyperparameter Optimization with SLM Lab



SLM Lab Results

• Fitness: an overall summary metric that takes 
into account the other four metrics 
simultaneously

• Strength: a measure of the cumulative reward 
attained by the agent

• Speed: This is how quickly (i.e., over how 
many episodes) the agent was able to reach 
its strength

• Stability: a measure of how well it retained its 
solution over subsequent episodes (after the 
agent solved how to perform well in the 
environment)

• Consistency: a measure of how reproducible 
the performance of the agent was across 
trials that had identical hyperparameter 
settings

• Hyperparameters
• explore_anneal_epi: number of episodes to 

decay epsilon from 1.0 to 0.01
• net_hidden_layers
• hidden_layers_activation
• optim_spec_lr (learning rate)

• Selected configuration
• a single hidden-layer architecture, with 64 

neurons in that layer
• the tanh activation function
• a learning rate of ~0.02
• trials with an exploration rate that anneals over 

10 episodes outperform trials that anneal over 
50 or 100 episodes

Hyperparameter Optimization with SLM Lab



Categories of Deep RL Agents

Agents Beyond DQN



Beware of
“Faulty Reward Functions in the Wild”

https://www.alexirpan.com/2018/02/14/rl-hard.htmlhttps://openai.com/blog/faulty-reward-functions/

“Despite repeatedly catching on fire, crashing into other boats, 
and going the wrong way on the track, our agent manages to 
achieve a higher score using this strategy [repeatedly visiting 
waypoints with rewards] than is possible by completing the 
course in the normal way.”

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://openai.com/blog/faulty-reward-functions/


Deep RL Book

From the authors of SLM Lab: a deep reinforcement learning 
framework for PyTorch …

Foundations of Deep Reinforcement Learning: Theory and Practice in 
Python: https://www.amazon.com/dp/0135172381

https://www.amazon.com/dp/0135172381


Deep RL Book Algorithms

Policy-based Example:
https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py

Advantage (for A2C):

https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py


SLM-Lab

git clone https://github.com/kengz/SLM-Lab.git

cd SLM-Lab/

./bin/setup

conda activate lab

python run_lab.py slm_lab/spec/benchmark/dqn/dqn_pong.json dqn_pong dev

https://slm-lab.gitbook.io/slm-lab/analyzing-results/performance-metrics [time steps are called frames]

https://github.com/kengz/SLM-Lab.git
https://slm-lab.gitbook.io/slm-lab/analyzing-results/performance-metrics


Early:
lower
scores

Later:
higher
scores

pong state: (210, 160, 3) RGB image
16 environments
agent has green paddle



Summary

In this chapter, we covered the essential theory of reinforcement 
learning, including Markov decision processes.  We leveraged that 
information to build a deep Q-learning agent that solved the Cart-Pole 
environment.  To wrap up, we introduced deep RL algorithms beyond 
DQN such as REINFORCE and actor-critic.  We also described SLM Lab—
a deep RL framework with existing algorithm implementations as well 
as tools for optimizing agent hyperparameters.





Datasets Review

• Images (PIL)
• MNIST Digit Classification
• Fashion Accessory Classification
• CIFAR10 Image Classification
• Tiny ImageNet Classification (MAP)

• Text (spaCy, NLTK)
• Reuters MultiLabel Classification (Macro Averaged ROC AUC)
• Newsgroups Classification
• IMDB Review Sentiment Classification
• Penn TreeBank Language Modeling (Perplexity)

• Speech (libROSA)
• Google Commands


