
Embeddings
Recurrent Neural Networks,

and Sequences (Part 2)
November 10, 2022

ddebarr@uw.edu

http://cross-entropy.net/ML530/Deep_Learning_5.pdf

mailto:ddebarr@uw.edu
http://cross-entropy.net/ML530/Deep_Learning_5.pdf

Agenda

• Homework Review

• [DLP] Deep Learning for Time Series

• [DLP] Deep Learning for Text

Deep Learning for Time Series

Time Series Applications

• Forecasting: predict future values

• Classification: bot detection

• Event detection: hotword detection (e.g. “Alexa”)

• Anomaly detection: unusual observation

• Change Detection: change of trend

Applications

Temperature Forecasting

• wget https://s3.amazonaws.com/keras-
datasets/jena_climate_2009_2016.csv.zip
• Weather data

• Max Planck Institute for Biogeochemistry

• Jena ("yee nuh"), a city in the Saale ("zah lay") river valley, in the eastern part
of Germany

• unzip jena_climate_2009_2016.csv.zip

• Distribution of (inter-arrival gap in seconds, frequency):
[(600, 420443), (1200, 2), (1800, 1), (8400, 1), (57600, 1), (60600, 1), (63600, 1)]

https://cross-entropy.net/ML530/missing_data.txt

Forecasting

https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
https://cross-entropy.net/ML530/missing_data.txt

Inspecting the Jena Weather Dataset

Forecasting

Jena Weather Dataset Columns

1. Date Time: datetime.datetime.strptime(value[0], '%d.%m.%Y %H:%M:%S’) [2009 – 2016 (includes 2 leap years: 2012, 2016)]

2. p (mbar): atmospheric pressure, measured in millibars

3. T (degC): temperature, measured in degrees Celsius

4. Tpot (K): potential temperature (for reference pressure), measured in Kelvin

5. Tdew (degC): dewpoint temperature (saturated with water vapor), measured in degrees Celsius

6. rh (%): relative humidity, measured as water vapor compared to possible water vapor

7. VPmax (mbar): maximum vapor pressure, measured in millibars

8. VPact (mbar): actual vapor pressure, measured in millibars

9. VPdef (mbar): deficit vapor pressure, measured in millibars

10. sh (g/kg): specific humidity, measured as grams of water vapor per kilogram of air

11. H2OC (mmol/mol): dihydrogen oxide (water vapor) concentration, measured as millimoles of water vapor to moles of air

12. rho (g/m**3): water density, measured as mass in grams divided by volume in cubic meters

13. wv (m/s): wind velocity, measured in meters per second

14. max. wv (m/s): maximum wind velocity, measured in meters per second

15. wd (deg): wind direction, measured in degrees

Forecasting

Parsing the Data

Forecasting

Plotting the Temperature Timeseries (8 years)

Forecasting

Plotting the Temperature for the First 10 Days

Forecasting

Always Look for Periodicity in Your Data

•Periodicity over multiple timescales is an important
and very common property of timeseries data

•Whether you’re looking at the weather, mall parking
occupancy, traffic to a website, sales of a grocery
store, or steps logged in a fitness tracker, you’ll see
daily cycles and yearly cycles (human-generated data
also tends to feature weekly cycles)

Forecasting

Number of Samples for Each Data Split

Forecasting

Normalizing the Data

Forecasting

timeseries_dataset_from_array()

Forecasting

Creating a Dataset

Only start_index and end_index change for val_dataset and test_dataset

Forecasting

Inspecting Shapes for the Dataset

Forecasting

Temperature from 24 Hours Ago as Baseline

Val MAE = 2.44; Tst MAE = 2.62

Forecasting

Multi-Layer Perceptron (MLP)

Forecasting

MLP Result

MLP does not beat “use last temperature” baseline, which had Val MAE = 2.44

Forecasting

ConvNet

Forecasting

ConvNet Result

Does *not* improve upon either the “use last” basline or the MLP

Forecasting

Pseudocode Recurrent Neural Network (RNN)

RNNs

NumPy Implementation for an RNN Cell

RNNs

Simple RNN Cell, Unrolled Over Time

RNNs

Long Short-Term Memory (LSTM) Cell

An LSTM cell adds features to its memory.
3 gates; values in [0, 1] …
i: input
f: forget
o: output

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/RNNs

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/

Gated Recurrent Unit (GRU) Cell

A GRU cell adds features to its memory.
2 gates; values in [0, 1] …
r: reset
z: update

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/RNNs

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/

LSTM Model

Beats all previous predictors: Test MAE = 2.55

RNNs

RNN Layer Can Process Any Sequence Length

RNNs

RNN Layer That Returns Only Its Last Output

RNNs

RNN Layer That Returns All Outputs

RNNs

Stacking RNN Layers

RNNs

Recurrent Dropout

• same dropout mask used for every position

• dropout argument: the dropout rate for inputs from previous layer
[same effect as SpatialDropout1D]

• recurrent_dropout: the dropout rate for inputs from previous position

Next Steps

Recurrent Dropout Result

Woo! Val MAE = 2.27; Tst MAE = 2.45

Next Steps

Restrictions for cuDNN Implementation

• Recurrent dropout isn’t supported by the LSTM and GRU cuDNN
kernels, so adding it to your layers forces the runtime to fall back to
the regular TensorFlow implementation, which is generally two to five
times slower on GPU (even though its computational cost is the
same)

• See “requirements to use the cuDNN implementation”:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

• Unrolling can be used to speed up the RNN, but it may also consume
more memory

Next Steps

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

Stacked GRU Cells with recurrent_dropout

Next Steps

Stacked GRU Cells Results

Our best score: Tst MAE = 2.39

Next Steps

Bidirectional RNN

• There are 2 distinct cells: one for the forward direction, the other for
the reverse direction

• The two cell outputs are concatenated

Next Steps

Bidirectional RNN Model

… does not perform as well as the plain LSTM layer

Next Steps

LSTM with samples[:, ::-1, :] (reversed inputs)

… did worse than the “use last” baseline

Next Steps

Going Even Further

• Adjust the number of units in each recurrent layer in the stacked
setup, as well as the amount of dropout. The current choices are
largely arbitrary and thus probably suboptimal.

• Adjust the learning rate used by the RMSprop optimizer, or try a
different optimizer.

• Try using a stack of Dense layers as the regressor on top of the
recurrent layer, instead of a single Dense layer.

• Improve the input to the model: try using longer or shorter sequences
or a different sampling rate, or start doing feature engineering.

Next Steps

Markets and Machine Learning

• Always remember that all trading is fundamentally information
arbitrage: gaining an advantage by leveraging data or insights that
other market participants are missing

• Trying to use well-known machine learning techniques and publicly
available data to beat the markets is effectively a dead end, since you
won’t have any information advantage compared to everyone else

• You’re likely to waste your time and resources with nothing to show
for it

Next Steps

Summary

• As you first learned in chapter 5, when approaching a new problem, it’s
good to first establish common-sense baselines for your metric of choice

• Try simple models before expensive ones, to make sure the additional
expense is justified

• When you have data where ordering matters, and in particular for
timeseries data, recurrent networks are a great fit and easily outperform
models that first flatten the temporal data

• To use dropout with recurrent networks, you should use a time-constant
dropout mask and recurrent dropout mask

• Stacked RNNs provide more representational power than a single RNN
layer

Deep Learning for Text

Deep Learning for Text

Example Applications

Applications

From Raw Text to Vectors

Preprocessing

Tokenization

Preprocessing

Understanding n-grams and bag-of-words

Preprocessing

Indexing

Preprocessing

Vectorizer

Preprocessing

TextVectorization

Preprocessing

TextVectorization Declaration

Preprocessing

Text Vectorization Demo

Preprocessing

In a tf.data pipeline or as part of a model

Preprocessing

Preparing the IMDB Movie Reviews Data

Sets and Sequences

Creating a Validation Partition

Sets and Sequences

Creating Trn/Val/Tst Partitions

Sets and Sequences

Shapes and Data Types

Sets and Sequences

Multi-Hot Encoding Example

Sets and Sequences

Multi-Hot Encoding Example

Sets and Sequences

IMDB Model

Sets and Sequences

IMDB Model fit() and evaluate()

Sets and Sequences

Tst Accuracy = 89.2%!

n-grams example

• “the cat sat on the mat”

• {"cat", "mat", "on", "sat", "the"}: uni-grams, aka 1-grams

• {"the cat", "cat sat", "sat on", "on the", "the mat"}: bi-grams, aka 2-grams

• Notes:
• These are sets (duplicates not allowed), instead of bags (duplicates allowed)

• For the ngrams argument of the TextVectorizer(): passing an integer will create
ngrams up to that integer

Sets and Sequences

Multi-Hot Bi-Grams

Tst Accuracy = 90.4%!

Term Frequency

Sets and Sequences

Term Frequency * Inverse Document Frequency
(TF*IDF)

https://github.com/keras-team/keras/blob/v2.9.0/keras/layers/preprocessing/index_lookup.py#L801:

return tf.math.log(1 + num_documents / (1 + token_document_counts))

Sets and Sequences

https://github.com/keras-team/keras/blob/v2.9.0/keras/layers/preprocessing/index_lookup.py#L801

TextVectorization(ngrams = 2)

Sets and Sequences

Tst Accuracy = 89.8%!

Exporting Model that Processes Raw Strings

Sets and Sequences

TextVectorization: output_model = ‘int’

Sets and Sequences

Sequence Model

Tst Accuracy = 87%

Sets and Sequences

One-Hot Word Vectors vs Word Embeddings

One-Hot Word Vectors:
distance(queen, king)
==
distance(queen, pancake)

Word Embeddings:
queen – woman + man = king

Sets and Sequences

Word Embeddings Example

• Vertical axis: ranges from domesticated to wild

• Horizontal axis: ranges from canine to feline

Sets and Sequences

Embeddings: Trained as Part of Network vs
Pretrained

Sets and Sequences

Instantiating an Embedding Layer

Sets and Sequences

Model with Embedding Layer Trained from
Scratch

Tst Accuracy = 87%

Sets and Sequences

Masking: Zeros are Skipped

Sets and Sequences

Embedding Layer with Masking Enabled

Tst Accuracy = 88%

Sets and Sequences

Parsing the Global Vectors (GloVe) Word
Embeddings File

Sets and Sequences

Preparing the GloVe Embeddings Matrix

Sets and Sequences

Creating the Embeddings Layer

Sets and Sequences

Model that Uses a Pretrained Embedding

“You’ll find that on this particular task, pretrained embeddings aren’t very helpful”

Sets and Sequences

Attention Scores Applied to an Image

Transformers

Self-Attention

Transformers

Queries, Keys, and Values
In search, we match a query against keys to retrieve values …

Transformers

Self-Attention

• for i in range(num_heads):
Qi = X * Wqi # (512, 768) x (768, 64) = (512, 64); the Query matrix

Ki = X * Wki # (512, 768) x (768, 64) = (512, 64); the Key matrix

Vi = X * Wvi # (512, 768) x (768, 64) = (512, 64); the Value matrix

Ai = SoftmaxRows(
𝑄𝑖∗𝐾𝑖

𝑇

64
) * Vi # (512, 512) x (512, 64) = (512, 64)

• Concatenate the 12 Ai matrices horizontally then project
A * P # (512, 768) x (768, 768) = (512, 768)

Dimensions above are consistent with Bidirectional Encoder Representations from Transformers (BERT) “Base”

Transformers

Multi-Head Attention

Transformers

The Transformer Encoder

Transformers

Transformer Encoder: __init__()

Transformers

https://arxiv.org/abs/1706.03762
Last sentence of section 3.2.2: d_k = d_model / h
key_dim = embed_dim // num_heads

https://arxiv.org/abs/1706.03762

TransformerEncoder: call() and get_config()

get_config(): returns values of the constructor arguments; used to create the layer

Transformers

Layer Normalization vs Batch Normalization

Transformers

Post-Layer Normalization vs Pre-Layer
Normalization

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/Transformers

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/

Using the TranformerEncoder

Tst Accuracy = 87.5%

Transformers

Features of NLP Approaches

Transformers

Positional Embeddings

Transformers

Combining PositionalEmbedding and
TransformerEncoder

Tst Accuracy = 88.3%

Transformers

Proposed Heuristic for Model Selection

What about leveraging a pretrained transformer?

Transformers

Chapter 11 IMDB Recap

• multi-hot unigrams with MLP: 89.2%

• multi-hot bigrams with MLP: 90.4%

• tf-idf bigrams with MLP: 89.8%

• one-hot encoding with bi-directional LSTM: 87%

• embedding with bi-directional LSTM without masking: 87%

• embedding with bi-directional LSTM with masking: 88%

• frozen, pre-trained embedding with bi-directional LSTM with masking: "not very helpful"

• transformer block from scratch without positional embedding: 87.5%

• transformer block from scratch with positional embedding: 88.3%

• [homework] fine-tuned hugging face microsoft/deberta-v3-large: 97.2%

Sequence-to-Sequence Learning Examples

Seq2Seq

Sequence-to-Sequence Processing

Seq-to-Seq

Example English-to-Spanish Translation Data

Seq-to-Seq

Splitting Data into Trn, Val, and Tst

Seq-to-Seq

Vectorizing the English and Spanish Text Pairs

Seq-to-Seq

Preparing Datasets for the Translation Task

Seq-to-Seq

Naïve Way to Use an RNN for Seq-to-Seq

Seq-to-Seq

GRU-based Decoder and End-to-End Model

Accuracy = 64%
[better to use the Bi-Lingual Evaluation Understudy (BLEU) score]

Seq-to-Seq

Sequence-to-Sequence RNN

Seq-to-Seq

GRU-based Encoder

Seq-to-Seq

Seq-to-Seq Inference

Seq-to-Seq

Example Output

Seq-to-Seq

Seq-to-Seq with Transformer

Seq-to-Seq

Transformer Decoder

Seq-to-Seq

TransformerDecoder::get_causal_attention_mask

Seq-to-Seq

TransformerDecoder::call

Seq-to-Seq

End-to-End Transformer

Seq-to-Seq

Seq-to-Seq Inference

Seq-to-Seq

Example Output

Seq-to-Seq

BiLingual Evaluation Understudy (BLEU)
[used for machine translation evaluation]

https://en.wikipedia.org/wiki/BLEUMT Evaluation

https://en.wikipedia.org/wiki/BLEU

Search: Greedy vs Beam vs Monte Carlo

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Beam Decoding with Beam Width = 2

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Length Normalization

Without normalization

With normalization, where ‘T’ = target sequence length

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Beam Search Pseudocode

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Tokenization: Byte Pair Encoding (BPE)

Practical Details https://web.stanford.edu/~jurafsky/slp3/2.pdf

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Summary

Visualizing Attention

from bertviz import head_view

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/Bonus

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/

Example of Attention

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlBonus

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

The Transformers Timeline

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/

ULMFiT: Universal Language Modeling Fine-tuning
GPT: Generative Pre-trained Transformer
BERT: Bidirectional Encoder Representations from Transformers
RoBERTa: Robust BERT approach
DistilBERT: Distilled (made smaller) BERT
XLM-R: cross-lingual Language Model – RoBERTa
DeBERTa: Decoding-enhanced BERT with disentangled attention
T5: Text-To-Text Transfer Transformer

https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

Bonus

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/
https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

BlenderBot: Chatbot Example

• Blog post
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

• Install and run
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
git clone https://github.com/facebookresearch/ParlAI.git
cd ParlAI
python setup.py develop --user
pip install 'git+https://github.com/rsennrich/subword-nmt.git#egg=subword-nmt'
python parlai/scripts/safe_interactive.py -t blended_skill_talk -mf zoo:blender/blender_90M/model

[context]: your persona: i love to dance.

your persona: i'm a teacher.

Enter Your Message: Have you ever tried an interpretive dance class?

[TransformerGenerator]: no i haven ' t , but i ' d love to try it . what do you do for fun ?

Enter Your Message: I love to do the twist. How about you?

[TransformerGenerator]: i like to watch hockey . it ' s my favorite . what ' s your favorite
sport to watch ?

Seq2Seq

https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

