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Agenda

• Homework Review

• [DLP] Deep Learning for Time Series

• [DLP] Deep Learning for Text



Deep Learning for Time Series



Time Series Applications

• Forecasting: predict future values

• Classification: bot detection

• Event detection: hotword detection (e.g. “Alexa”)

• Anomaly detection: unusual observation

• Change Detection: change of trend

Applications



Temperature Forecasting

• wget https://s3.amazonaws.com/keras-
datasets/jena_climate_2009_2016.csv.zip
• Weather data

• Max Planck Institute for Biogeochemistry

• Jena ("yee nuh"), a city in the Saale ("zah lay") river valley, in the eastern part 
of Germany

• unzip jena_climate_2009_2016.csv.zip

• Distribution of (inter-arrival gap in seconds, frequency):
[(600, 420443), (1200, 2), (1800, 1), (8400, 1), (57600, 1), (60600, 1), (63600, 1)]

https://cross-entropy.net/ML530/missing_data.txt

Forecasting

https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
https://cross-entropy.net/ML530/missing_data.txt


Inspecting the Jena Weather Dataset

Forecasting



Jena Weather Dataset Columns

1. Date Time: datetime.datetime.strptime(value[0], '%d.%m.%Y %H:%M:%S’) [2009 – 2016 (includes 2 leap years: 2012, 2016)]

2. p (mbar): atmospheric pressure, measured in millibars

3. T (degC): temperature, measured in degrees Celsius

4. Tpot (K): potential temperature (for reference pressure), measured in Kelvin

5. Tdew (degC): dewpoint temperature (saturated with water vapor), measured in degrees Celsius

6. rh (%): relative humidity, measured as water vapor compared to possible water vapor

7. VPmax (mbar): maximum vapor pressure, measured in millibars

8. VPact (mbar): actual vapor pressure, measured in millibars

9. VPdef (mbar): deficit vapor pressure, measured in millibars

10. sh (g/kg): specific humidity, measured as grams of water vapor per kilogram of air

11. H2OC (mmol/mol): dihydrogen oxide (water vapor) concentration, measured as millimoles of water vapor to moles of air

12. rho (g/m**3): water density, measured as mass in grams divided by volume in cubic meters

13. wv (m/s): wind velocity, measured in meters per second

14. max. wv (m/s): maximum wind velocity, measured in meters per second

15. wd (deg): wind direction, measured in degrees

Forecasting



Parsing the Data

Forecasting



Plotting the Temperature Timeseries (8 years)

Forecasting



Plotting the Temperature for the First 10 Days

Forecasting



Always Look for Periodicity in Your Data

•Periodicity over multiple timescales is an important 
and very common property of timeseries data

•Whether you’re looking at the weather, mall parking 
occupancy, traffic to a website, sales of a grocery 
store, or steps logged in a fitness tracker, you’ll see 
daily cycles and yearly cycles (human-generated data 
also tends to feature weekly cycles)

Forecasting



Number of Samples for Each Data Split

Forecasting



Normalizing the Data

Forecasting



timeseries_dataset_from_array()

Forecasting



Creating a Dataset

Only start_index and end_index change for val_dataset and test_dataset

Forecasting



Inspecting Shapes for the Dataset

Forecasting



Temperature from 24 Hours Ago as Baseline

Val MAE = 2.44;    Tst MAE = 2.62

Forecasting



Multi-Layer Perceptron (MLP)

Forecasting



MLP Result

MLP does not beat “use last temperature” baseline, which had Val MAE = 2.44

Forecasting



ConvNet

Forecasting



ConvNet Result

Does *not* improve upon either the “use last” basline or the MLP

Forecasting



Pseudocode Recurrent Neural Network (RNN)

RNNs



NumPy Implementation for an RNN Cell

RNNs



Simple RNN Cell, Unrolled Over Time

RNNs



Long Short-Term Memory (LSTM) Cell

An LSTM cell adds features to its memory.
3 gates; values in [0, 1] …
i: input
f: forget
o: output

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/RNNs

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/


Gated Recurrent Unit (GRU) Cell

A GRU cell adds features to its memory.
2 gates; values in [0, 1] …
r: reset
z: update

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/RNNs

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/


LSTM Model

Beats all previous predictors: Test MAE = 2.55

RNNs



RNN Layer Can Process Any Sequence Length

RNNs



RNN Layer That Returns Only Its Last Output

RNNs



RNN Layer That Returns All Outputs

RNNs



Stacking RNN Layers

RNNs



Recurrent Dropout

• same dropout mask used for every position

• dropout argument: the dropout rate for inputs from previous layer 
[same effect as SpatialDropout1D]

• recurrent_dropout: the dropout rate for inputs from previous position

Next Steps



Recurrent Dropout Result

Woo!    Val MAE = 2.27;    Tst MAE = 2.45

Next Steps



Restrictions for cuDNN Implementation

• Recurrent dropout isn’t supported by the LSTM and GRU cuDNN
kernels, so adding it to your layers forces the runtime to fall back to 
the regular TensorFlow implementation, which is generally two to five 
times slower on GPU (even though its computational cost is the 
same)

• See “requirements to use the cuDNN implementation”: 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

• Unrolling can be used to speed up the RNN, but it may also consume 
more memory

Next Steps

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM


Stacked GRU Cells with recurrent_dropout

Next Steps



Stacked GRU Cells Results

Our best score: Tst MAE = 2.39

Next Steps



Bidirectional RNN

• There are 2 distinct cells: one for the forward direction, the other for 
the reverse direction

• The two cell outputs are concatenated

Next Steps



Bidirectional RNN Model

… does not perform as well as the plain LSTM layer

Next Steps



LSTM with samples[:, ::-1, :] (reversed inputs)

… did worse than the “use last” baseline

Next Steps



Going Even Further

• Adjust the number of units in each recurrent layer in the stacked 
setup, as well as the amount of dropout. The current choices are 
largely arbitrary and thus probably suboptimal.

• Adjust the learning rate used by the RMSprop optimizer, or try a 
different optimizer.

• Try using a stack of Dense layers as the regressor on top of the 
recurrent layer, instead of a single Dense layer.

• Improve the input to the model: try using longer or shorter sequences 
or a different sampling rate, or start doing feature engineering.

Next Steps



Markets and Machine Learning

• Always remember that all trading is fundamentally information 
arbitrage: gaining an advantage by leveraging data or insights that 
other market participants are missing

• Trying to use well-known machine learning techniques and publicly 
available data to beat the markets is effectively a dead end, since you 
won’t have any information advantage compared to everyone else

• You’re likely to waste your time and resources with nothing to show 
for it

Next Steps



Summary

• As you first learned in chapter 5, when approaching a new problem, it’s 
good to first establish common-sense baselines for your metric of choice

• Try simple models before expensive ones, to make sure the additional 
expense is justified

• When you have data where ordering matters, and in particular for 
timeseries data, recurrent networks are a great fit and easily outperform 
models that first flatten the temporal data

• To use dropout with recurrent networks, you should use a time-constant 
dropout mask and recurrent dropout mask

• Stacked RNNs provide more representational power than a single RNN 
layer



Deep Learning for Text



Deep Learning for Text



Example Applications

Applications



From Raw Text to Vectors

Preprocessing



Tokenization

Preprocessing



Understanding n-grams and bag-of-words

Preprocessing



Indexing

Preprocessing



Vectorizer

Preprocessing



TextVectorization

Preprocessing



TextVectorization Declaration

Preprocessing



Text Vectorization Demo

Preprocessing



In a tf.data pipeline or as part of a model

Preprocessing



Preparing the IMDB Movie Reviews Data

Sets and Sequences



Creating a Validation Partition

Sets and Sequences



Creating Trn/Val/Tst Partitions

Sets and Sequences



Shapes and Data Types

Sets and Sequences



Multi-Hot Encoding Example

Sets and Sequences



Multi-Hot Encoding Example

Sets and Sequences



IMDB Model

Sets and Sequences



IMDB Model fit() and evaluate()

Sets and Sequences

Tst Accuracy = 89.2%!



n-grams example

• “the cat sat on the mat”

• {"cat", "mat", "on", "sat", "the"}: uni-grams, aka 1-grams

• {"the cat", "cat sat", "sat on", "on the", "the mat"}: bi-grams, aka 2-grams

• Notes:
• These are sets (duplicates not allowed), instead of bags (duplicates allowed)

• For the ngrams argument of the TextVectorizer(): passing an integer will create 
ngrams up to that integer

Sets and Sequences



Multi-Hot Bi-Grams

Tst Accuracy = 90.4%!



Term Frequency

Sets and Sequences



Term Frequency * Inverse Document Frequency
(TF*IDF)

https://github.com/keras-team/keras/blob/v2.9.0/keras/layers/preprocessing/index_lookup.py#L801:

return tf.math.log(1 + num_documents / (1 + token_document_counts))

Sets and Sequences

https://github.com/keras-team/keras/blob/v2.9.0/keras/layers/preprocessing/index_lookup.py#L801


TextVectorization(ngrams = 2)

Sets and Sequences

Tst Accuracy = 89.8%!



Exporting Model that Processes Raw Strings

Sets and Sequences



TextVectorization: output_model = ‘int’

Sets and Sequences



Sequence Model

Tst Accuracy = 87%

Sets and Sequences



One-Hot Word Vectors vs Word Embeddings

One-Hot Word Vectors:
distance(queen, king)
==
distance(queen, pancake)

Word Embeddings:
queen – woman + man = king

Sets and Sequences



Word Embeddings Example

• Vertical axis: ranges from domesticated to wild

• Horizontal axis: ranges from canine to feline

Sets and Sequences



Embeddings: Trained as Part of Network vs 
Pretrained

Sets and Sequences



Instantiating an Embedding Layer

Sets and Sequences



Model with Embedding Layer Trained from 
Scratch

Tst Accuracy = 87%

Sets and Sequences



Masking: Zeros are Skipped

Sets and Sequences



Embedding Layer with Masking Enabled

Tst Accuracy = 88%

Sets and Sequences



Parsing the Global Vectors (GloVe) Word 
Embeddings File

Sets and Sequences



Preparing the GloVe Embeddings Matrix

Sets and Sequences



Creating the Embeddings Layer

Sets and Sequences



Model that Uses a Pretrained Embedding

“You’ll find that on this particular task, pretrained embeddings aren’t very helpful”

Sets and Sequences



Attention Scores Applied to an Image

Transformers



Self-Attention

Transformers



Queries, Keys, and Values
In search, we match a query against keys to retrieve values …

Transformers



Self-Attention

• for i in range(num_heads):
Qi = X * Wqi # (512, 768) x (768, 64) = (512, 64); the Query matrix

Ki = X * Wki # (512, 768) x (768, 64) = (512, 64); the Key matrix

Vi = X * Wvi # (512, 768) x (768, 64) = (512, 64); the Value matrix

Ai = SoftmaxRows(
𝑄𝑖∗𝐾𝑖

𝑇

64
) * Vi # (512, 512) x (512, 64) = (512, 64)

• Concatenate the 12 Ai matrices horizontally then project
A * P    # (512, 768) x (768, 768) = (512, 768) 

Dimensions above are consistent with Bidirectional Encoder Representations from Transformers (BERT) “Base”

Transformers



Multi-Head Attention

Transformers



The Transformer Encoder

Transformers



Transformer Encoder: __init__()

Transformers

https://arxiv.org/abs/1706.03762
Last sentence of section 3.2.2: d_k = d_model / h
key_dim = embed_dim // num_heads

https://arxiv.org/abs/1706.03762


TransformerEncoder: call() and get_config()

get_config(): returns values of the constructor arguments; used to create the layer

Transformers



Layer Normalization vs Batch Normalization

Transformers



Post-Layer Normalization vs Pre-Layer 
Normalization

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/Transformers

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/


Using the TranformerEncoder

Tst Accuracy = 87.5%

Transformers



Features of NLP Approaches

Transformers



Positional Embeddings

Transformers



Combining PositionalEmbedding and 
TransformerEncoder

Tst Accuracy = 88.3%

Transformers



Proposed Heuristic for Model Selection

What about leveraging a pretrained transformer?

Transformers



Chapter 11 IMDB Recap

• multi-hot unigrams with MLP: 89.2%

• multi-hot bigrams with MLP: 90.4%

• tf-idf bigrams with MLP: 89.8%

• one-hot encoding with bi-directional LSTM: 87%

• embedding with bi-directional LSTM without masking: 87%

• embedding with bi-directional LSTM with masking: 88%

• frozen, pre-trained embedding with bi-directional LSTM with masking: "not very helpful"

• transformer block from scratch without positional embedding: 87.5%

• transformer block from scratch with positional embedding: 88.3%

• [homework] fine-tuned hugging face microsoft/deberta-v3-large: 97.2%



Sequence-to-Sequence Learning Examples

Seq2Seq



Sequence-to-Sequence Processing

Seq-to-Seq



Example English-to-Spanish Translation Data

Seq-to-Seq



Splitting Data into Trn, Val, and Tst

Seq-to-Seq



Vectorizing the English and Spanish Text Pairs

Seq-to-Seq



Preparing Datasets for the Translation Task

Seq-to-Seq



Naïve Way to Use an RNN for Seq-to-Seq

Seq-to-Seq



GRU-based Decoder and End-to-End Model

Accuracy = 64%
[better to use the Bi-Lingual Evaluation Understudy (BLEU) score]

Seq-to-Seq



Sequence-to-Sequence RNN

Seq-to-Seq



GRU-based Encoder

Seq-to-Seq



Seq-to-Seq Inference

Seq-to-Seq



Example Output

Seq-to-Seq



Seq-to-Seq with Transformer

Seq-to-Seq



Transformer Decoder

Seq-to-Seq



TransformerDecoder::get_causal_attention_mask

Seq-to-Seq



TransformerDecoder::call

Seq-to-Seq



End-to-End Transformer

Seq-to-Seq



Seq-to-Seq Inference

Seq-to-Seq



Example Output

Seq-to-Seq



BiLingual Evaluation Understudy (BLEU)
[used for machine translation evaluation]

https://en.wikipedia.org/wiki/BLEUMT Evaluation

https://en.wikipedia.org/wiki/BLEU


Search: Greedy vs Beam vs Monte Carlo

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Beam Decoding with Beam Width = 2

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Length Normalization

Without normalization

With normalization, where ‘T’ = target sequence length

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Beam Search Pseudocode

Beam Search https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Tokenization: Byte Pair Encoding (BPE)

Practical Details https://web.stanford.edu/~jurafsky/slp3/2.pdf

https://web.stanford.edu/~jurafsky/slp3/2.pdf


Summary



Visualizing Attention

from bertviz import head_view

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/Bonus

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/


Example of Attention

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmlBonus

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


The Transformers Timeline

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/

ULMFiT: Universal Language Modeling Fine-tuning
GPT: Generative Pre-trained Transformer
BERT: Bidirectional Encoder Representations from Transformers
RoBERTa: Robust BERT approach
DistilBERT: Distilled (made smaller) BERT
XLM-R: cross-lingual Language Model – RoBERTa
DeBERTa: Decoding-enhanced BERT with disentangled attention
T5: Text-To-Text Transfer Transformer

https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

Bonus

https://learning.oreilly.com/library/view/natural-language-processing/9781098136789/
https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html


BlenderBot: Chatbot Example

• Blog post
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

• Install and run
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
git clone https://github.com/facebookresearch/ParlAI.git
cd ParlAI
python setup.py develop --user
pip install 'git+https://github.com/rsennrich/subword-nmt.git#egg=subword-nmt'
python parlai/scripts/safe_interactive.py -t blended_skill_talk -mf zoo:blender/blender_90M/model

[context]: your persona: i love to dance.

your persona: i'm a teacher.

Enter Your Message: Have you ever tried an interpretive dance class?

[TransformerGenerator]: no i haven ' t , but i ' d love to try it . what do you do for fun ?

Enter Your Message: I love to do the twist.  How about you?

[TransformerGenerator]: i like to watch hockey . it ' s my favorite . what ' s your favorite 
sport to watch ?

Seq2Seq

https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

