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Deep Learning for Computer Vision



Instantiating a Small ConvNet

Intro



Conv2D

• A convolution filter is the neuron of the convolution layer, deriving features 
by matching the filter to a subregion of the image [generating “local” 
(translation invariant) features]

• Most common: kernel_size = (3, 3) and strides = (1, 1)

• Output shape
• padding = ‘valid’ (i.e. no padding)

output_shape = math.ceil((input_shape - filter_size + 1) / strides)

• padding = ‘same’
output_shape = math.ceil(input_shape / strides)

https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/python/ops/nn_ops.py#L17

Intro

https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/python/ops/nn_ops.py#L17


Pooling2D

• MaxPooling2D or AvgPooling2D

• Changes the resolution (height and width) of the feature maps, 
changing the scale of a picture element (pixel)

• Most common: pool_size = (2, 2) and strides = (2, 2)

• Output shape
• padding = “valid” (the default)

output_shape = math.floor((input_shape – pool_size) / strides) + 1

• padding = “same”
output_shape = math.floor((input_shape – 1) / strides) + 1

Intro



ConvNet Summary

Intro



Training and Evaluating the ConvNet

Intro



Images can be Broken into Local Patterns

Intro



ConvNet Properties

• Learned patterns are translation-invariant

• Learned patterns can include spatial hierarchies of patterns

Intro



Response Map (aka Feature Map)

Intro



Convolution Parameters

• Size of the patch used to generate a feature value

• Depth of the output feature map (one feature map per 
filter/kernel/neuron)

Intro



How Convolution Works

input_shape: (5, 5)
filters = 3
kernel_size = (3, 3)
padding = ‘valid’
output_shape: (3, 3)

Intro



3x3 Patches for a 5x5 Input: padding = ‘valid’

Intro



3x3 Patches for a 5x5 Input: padding = ‘same’

Intro



3x3 Patches for 5x5 Input: strides = 2 (‘valid’)

Intro



Convolution Without Pooling (or Strides > 1)

• Limited scale for 
features
• conv2d_3: (3, 3)
• conv2d_4: (5, 5)
• conv2d_5: (7, 7)

• Added dense layer is 
large, because the 
feature map resolution 
is large

Intro



Dogs vs Cats Dataset

ConvNet from Scratch



cats_vs_dogs_small Directory Structure

ConvNet from Scratch



Copying Images

ConvNet from Scratch



Building the Model

ConvNet from Scratch



Model Summary

ConvNet from Scratch



Configuring the Model

ConvNet from Scratch



Preprocessing the Data

• Read the picture files

• Decode the JPEG content to RGB grids of pixels

• Convert these into floating-point tensors

• Resize them to a shared size (we’ll use 180 × 180)

• Pack them into batches (we’ll use batches of 32 images)

ConvNet from Scratch



image_dataset_from_directory

ConvNet from Scratch



Tensorflow Datasets

ConvNet from Scratch



Displaying Shapes of Data and Labels

ConvNet from Scratch



Fitting the Model

Tst Acc:
69.5%

ConvNet from Scratch



Data Augmentation

ConvNet from Scratch



Displaying Randomly Augmented Images

ConvNet from Scratch



Adding Augmentations Model

ConvNet from Scratch



Fitting the Model

Tst Acc:
83.5%
(was 69.5%)

ConvNet from Scratch



Using a Frozen Pretrained Model

Pretrained



Instantiating VGG16

Pretrained



VGG16 Summary

Pretrained



Using a Separate Model

Pretrained



Result for Using a Separate Model

Val Acc:
around 97%
(was Tst Acc:
{ 69.5%,
83.5% } )

Pretrained



Extending the Model with Data Augmentation

Pretrained



Result for Extending the Model

Tst Acc:
97.5%
(was Val Acc:
around 97%;
Tst
Acc:
{ 69.5%,
83.5% } )

Pretrained



Finetuning

Pretrained



Unfreezing Last Block

• block5: block5_conv1, block5_conv2, block5_conv3, block5_pool

• Finetuning: Tst Acc = 98.5%
• Previous

• Small ConvNet: Tst Acc = 69.5%

• Data Augmentations: Tst Acc = 83.5%

• Frozen without Augmentations: Val Acc around 97%

• Frozen with Augmentations: Tst Acc: 97.5%

Pretrained



Summary



Advanced Deep Learning for Computer Vision



Computer Vision Tasks

CV Tasks



Semantic vs Instance Segmentation

CV Tasks



Semantic Segmentation Data

Segmentation



Semantic Segmentation Example

Segmentation



Partitioning the Data

Segmentation



Building the Model

Segmentation



Transposed Convolution

import numpy as np

filter = np.array([ [ .1, .2, .3 ], [ .4, .5, .6 ], [ .7, .8, .9 ] ], dtype = np.float32)    # kernel_size = (3, 3)

empty_row = [ .0, .0, .0, .0, .0 ]    # input_shape: (5, 5)

W = np.array([    # notice how each output cell gets its own row below

[ .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0, .0 ] + empty_row + empty_row,

[ .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0 ] + empty_row + empty_row,

[ .0, .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9 ] + empty_row + empty_row,

empty_row + [ .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0, .0 ] + empty_row,

empty_row + [ .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0 ] + empty_row,

empty_row + [ .0, .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9 ] + empty_row,

empty_row + empty_row + [ .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0, .0 ],

empty_row + empty_row + [ .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0 ],

empty_row + empty_row + [ .0, .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9 ]], dtype = np.float32).transpose()

To go from (flattened/reshaped) input shape to output shape, we have: 1x25 * 25x9 = 1x9    # reshape to get 3x3 output

To go from (flattened/reshaped) output shape to input shape, we have to transpose the convolution matrix: 1x9 * 9x25 = 1x25

Segmentation



Model Summary

Segmentation



Fitting the Model

Segmentation



Example Prediction

Segmentation



VGG16

Modern Architecture



Residual Network (ResNet) Block
https://arxiv.org/abs/1512.03385

I prefer the interpretation from the original paper; i.e. residual = block(x)

Modern Architecture

https://arxiv.org/abs/1512.03385


Simple ResNet

Modern Architecture



ResNet Summary

Modern Architecture



Batch Normalization

https://arxiv.org/abs/1502.03167Modern Architecture

https://arxiv.org/abs/1502.03167


Depthwise Separable Convolution

One filter per input channel, followed by 1x1 “pointwise” convolution:

Modern Architecture



ConvNet Architecture Principles

Modern Architecture



A Mini Xception-like Model

Modern Architecture



Mini Xception-like Model on Cats vs Dogs

From scratch, without data augmentation …

Modern Architecture



Code for Visualizing Convolution Activations

Visualizations



Visualizing Convolution Activations

Visualizations



Visualizations



Higher-level Abstractions

"after observing a scene for a few seconds, a human can remember 
which abstract objects were present in it (bicycle, tree) but can’t 
remember the specific appearance of these objects"

Visualizations



Computing Activations

Visualizations



“Loss” (Mean Filter Activation) 

Visualizations



Gradient Ascent

Visualizations



The “Party Worms” Filter

Presumably we’re mapping values from [-2, 2] to [0, 255]

Visualizations



Optimal Filter Inputs for Sample Filters

Visualizations



Class Activation Map Heatmap

• Imagine that we’re weighting a spatial map of “how intensely the 
input image activates different channels” (convolution activations) by 
“how important each channel is with regard to the class” (gradient of 
class activation with respect to convolution activation)

• Resulting in a spatial map of “how intensely the input image activates 
the class”

Visualizations



Loading Xception Model and an Image

Visualizations



African Elephant Image

Visualizations



Computing the Gradients

Visualizations



Standalone Class Activation Heatmap

Visualizations



Superimposing the Heatmap

Visualizations



Class Activation Heatmap

This visualization technique answers two important questions:
• Why did the network think this image contained an African 

elephant?
• Where is the African elephant located in the picture?

Visualizations



Summary



EfficientNet v2 Notes



Inverted Residual Block

• Notice how the residual block has an identity connection between the 
wider layers (more channels), while the inverted residual block has an 
identity connection between the narrower layers (less channels)

• Sometimes called an MBConv block, because the inverted residual 
block structure was originally proposed for MobileNet version 2

https://paperswithcode.com/method/inverted-residual-block

https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607

https://paperswithcode.com/method/inverted-residual-block
https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607


Squeeze and Excitation Block

Sigmoid activation is applied to the colored 1x1xC features, which is 
then used to gate the feature maps (scaling features using coefficients 
in the interval [0, 1])

https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607

https://paperswithcode.com/method/squeeze-and-excitation-block

https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607
https://paperswithcode.com/method/squeeze-and-excitation-block

