
Convolutional Networks
(ConvNets):

Part II
November 3, 2022

ddebarr@uw.edu

http://cross-entropy.net/ml530/Deep_Learning_3.pdf

mailto:ddebarr@uw.edu
http://cross-entropy.net/ml530/Deep_Learning_3.pdf

Deep Learning for Computer Vision

Instantiating a Small ConvNet

Intro

Conv2D

• A convolution filter is the neuron of the convolution layer, deriving features
by matching the filter to a subregion of the image [generating “local”
(translation invariant) features]

• Most common: kernel_size = (3, 3) and strides = (1, 1)

• Output shape
• padding = ‘valid’ (i.e. no padding)

output_shape = math.ceil((input_shape - filter_size + 1) / strides)

• padding = ‘same’
output_shape = math.ceil(input_shape / strides)

https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/python/ops/nn_ops.py#L17

Intro

https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/python/ops/nn_ops.py#L17

Pooling2D

• MaxPooling2D or AvgPooling2D

• Changes the resolution (height and width) of the feature maps,
changing the scale of a picture element (pixel)

• Most common: pool_size = (2, 2) and strides = (2, 2)

• Output shape
• padding = “valid” (the default)

output_shape = math.floor((input_shape – pool_size) / strides) + 1

• padding = “same”
output_shape = math.floor((input_shape – 1) / strides) + 1

Intro

ConvNet Summary

Intro

Training and Evaluating the ConvNet

Intro

Images can be Broken into Local Patterns

Intro

ConvNet Properties

• Learned patterns are translation-invariant

• Learned patterns can include spatial hierarchies of patterns

Intro

Response Map (aka Feature Map)

Intro

Convolution Parameters

• Size of the patch used to generate a feature value

• Depth of the output feature map (one feature map per
filter/kernel/neuron)

Intro

How Convolution Works

input_shape: (5, 5)
filters = 3
kernel_size = (3, 3)
padding = ‘valid’
output_shape: (3, 3)

Intro

3x3 Patches for a 5x5 Input: padding = ‘valid’

Intro

3x3 Patches for a 5x5 Input: padding = ‘same’

Intro

3x3 Patches for 5x5 Input: strides = 2 (‘valid’)

Intro

Convolution Without Pooling (or Strides > 1)

• Limited scale for
features
• conv2d_3: (3, 3)
• conv2d_4: (5, 5)
• conv2d_5: (7, 7)

• Added dense layer is
large, because the
feature map resolution
is large

Intro

Dogs vs Cats Dataset

ConvNet from Scratch

cats_vs_dogs_small Directory Structure

ConvNet from Scratch

Copying Images

ConvNet from Scratch

Building the Model

ConvNet from Scratch

Model Summary

ConvNet from Scratch

Configuring the Model

ConvNet from Scratch

Preprocessing the Data

• Read the picture files

• Decode the JPEG content to RGB grids of pixels

• Convert these into floating-point tensors

• Resize them to a shared size (we’ll use 180 × 180)

• Pack them into batches (we’ll use batches of 32 images)

ConvNet from Scratch

image_dataset_from_directory

ConvNet from Scratch

Tensorflow Datasets

ConvNet from Scratch

Displaying Shapes of Data and Labels

ConvNet from Scratch

Fitting the Model

Tst Acc:
69.5%

ConvNet from Scratch

Data Augmentation

ConvNet from Scratch

Displaying Randomly Augmented Images

ConvNet from Scratch

Adding Augmentations Model

ConvNet from Scratch

Fitting the Model

Tst Acc:
83.5%
(was 69.5%)

ConvNet from Scratch

Using a Frozen Pretrained Model

Pretrained

Instantiating VGG16

Pretrained

VGG16 Summary

Pretrained

Using a Separate Model

Pretrained

Result for Using a Separate Model

Val Acc:
around 97%
(was Tst Acc:
{ 69.5%,
83.5% })

Pretrained

Extending the Model with Data Augmentation

Pretrained

Result for Extending the Model

Tst Acc:
97.5%
(was Val Acc:
around 97%;
Tst
Acc:
{ 69.5%,
83.5% })

Pretrained

Finetuning

Pretrained

Unfreezing Last Block

• block5: block5_conv1, block5_conv2, block5_conv3, block5_pool

• Finetuning: Tst Acc = 98.5%
• Previous

• Small ConvNet: Tst Acc = 69.5%

• Data Augmentations: Tst Acc = 83.5%

• Frozen without Augmentations: Val Acc around 97%

• Frozen with Augmentations: Tst Acc: 97.5%

Pretrained

Summary

Advanced Deep Learning for Computer Vision

Computer Vision Tasks

CV Tasks

Semantic vs Instance Segmentation

CV Tasks

Semantic Segmentation Data

Segmentation

Semantic Segmentation Example

Segmentation

Partitioning the Data

Segmentation

Building the Model

Segmentation

Transposed Convolution

import numpy as np

filter = np.array([[.1, .2, .3], [.4, .5, .6], [.7, .8, .9]], dtype = np.float32) # kernel_size = (3, 3)

empty_row = [.0, .0, .0, .0, .0] # input_shape: (5, 5)

W = np.array([# notice how each output cell gets its own row below

[.1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0, .0] + empty_row + empty_row,

[.0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0] + empty_row + empty_row,

[.0, .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9] + empty_row + empty_row,

empty_row + [.1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0, .0] + empty_row,

empty_row + [.0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0] + empty_row,

empty_row + [.0, .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9] + empty_row,

empty_row + empty_row + [.1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0, .0],

empty_row + empty_row + [.0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9, .0],

empty_row + empty_row + [.0, .0, .1, .2, .3, .0, .0, .4, .5, .6, .0, .0, .7, .8, .9]], dtype = np.float32).transpose()

To go from (flattened/reshaped) input shape to output shape, we have: 1x25 * 25x9 = 1x9 # reshape to get 3x3 output

To go from (flattened/reshaped) output shape to input shape, we have to transpose the convolution matrix: 1x9 * 9x25 = 1x25

Segmentation

Model Summary

Segmentation

Fitting the Model

Segmentation

Example Prediction

Segmentation

VGG16

Modern Architecture

Residual Network (ResNet) Block
https://arxiv.org/abs/1512.03385

I prefer the interpretation from the original paper; i.e. residual = block(x)

Modern Architecture

https://arxiv.org/abs/1512.03385

Simple ResNet

Modern Architecture

ResNet Summary

Modern Architecture

Batch Normalization

https://arxiv.org/abs/1502.03167Modern Architecture

https://arxiv.org/abs/1502.03167

Depthwise Separable Convolution

One filter per input channel, followed by 1x1 “pointwise” convolution:

Modern Architecture

ConvNet Architecture Principles

Modern Architecture

A Mini Xception-like Model

Modern Architecture

Mini Xception-like Model on Cats vs Dogs

From scratch, without data augmentation …

Modern Architecture

Code for Visualizing Convolution Activations

Visualizations

Visualizing Convolution Activations

Visualizations

Visualizations

Higher-level Abstractions

"after observing a scene for a few seconds, a human can remember
which abstract objects were present in it (bicycle, tree) but can’t
remember the specific appearance of these objects"

Visualizations

Computing Activations

Visualizations

“Loss” (Mean Filter Activation)

Visualizations

Gradient Ascent

Visualizations

The “Party Worms” Filter

Presumably we’re mapping values from [-2, 2] to [0, 255]

Visualizations

Optimal Filter Inputs for Sample Filters

Visualizations

Class Activation Map Heatmap

• Imagine that we’re weighting a spatial map of “how intensely the
input image activates different channels” (convolution activations) by
“how important each channel is with regard to the class” (gradient of
class activation with respect to convolution activation)

• Resulting in a spatial map of “how intensely the input image activates
the class”

Visualizations

Loading Xception Model and an Image

Visualizations

African Elephant Image

Visualizations

Computing the Gradients

Visualizations

Standalone Class Activation Heatmap

Visualizations

Superimposing the Heatmap

Visualizations

Class Activation Heatmap

This visualization technique answers two important questions:
• Why did the network think this image contained an African

elephant?
• Where is the African elephant located in the picture?

Visualizations

Summary

EfficientNet v2 Notes

Inverted Residual Block

• Notice how the residual block has an identity connection between the
wider layers (more channels), while the inverted residual block has an
identity connection between the narrower layers (less channels)

• Sometimes called an MBConv block, because the inverted residual
block structure was originally proposed for MobileNet version 2

https://paperswithcode.com/method/inverted-residual-block

https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607

https://paperswithcode.com/method/inverted-residual-block
https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607

Squeeze and Excitation Block

Sigmoid activation is applied to the colored 1x1xC features, which is
then used to gate the feature maps (scaling features using coefficients
in the interval [0, 1])

https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607

https://paperswithcode.com/method/squeeze-and-excitation-block

https://github.com/keras-team/keras/blob/v2.9.0/keras/applications/efficientnet_v2.py#L607
https://paperswithcode.com/method/squeeze-and-excitation-block

