w

Convolutional Networks
(ConvNets):
Part |

October 27, 2022
ddebarr@uw.edu
http://cross-entropy.net/m|1530/Deep Learning 2.pdf

mailto:ddebarr@uw.edu
http://cross-entropy.net/ml530/Deep_Learning_2.pdf

Agenda for Tonight

* Homework Review
 [DLI] Chapter 1: Biological and Machine Vision

 [DLI] Chapter 10: Machine Vision

Textbook #1

The cover of our textbook

contains the unofficial mascot of : D E E P

the book, a trilobite in deep
waters ©

The trilobite is a 3-section, 3-lobe | LLU ST RATE D

marine arthropod that went
extinct 250 million years ago

https://en.wikipedia.org/wiki/Trilobite

w

ApDISON WESLEY DATA & ANALYTICS SERIES VAV

LEARNING

A Visual, Interactive Guide to Artificial Intelligence

L

®
R o @ JON KROHN

with GRANT BEYLEVELD and AGLAE BASSENS

https://en.wikipedia.org/wiki/Trilobite

[IDLI] Chapter 1: Biological and Machine Visio

* Biological Vision * TensorFlow Playground
 Machine Vision e Quick, Draw!
* The Neocognitron e Summary
* LeNet-5
* The Traditional Machine Learning
Approach

* ImageNet and the ILSVRC
* AlexNet

Authors

* Jon Krohn: chief data scientist at untapt.com

* Grant Beyleveld: data scientist at untapt.com

* Aglae Bassens: Belgian artist based in Paris

Biological Vision

Santiago Cajal: 1852 - 1934

w

Spanish physician who was the first to identify neurons, by examining
thin slices of brain tissue

Biological Vision

w

Hand-Drawn Neurons from Cajal (1894)

* (a)-(e) illustrates the growth of a neuron

* (A)-(D) contrasts the neurons of a frog, lizard, rat, and human
respectively

Biological Vision

w

Surge in the Number of Species

Evidence suggests this surge was driven by the development of light
detectors in the trilobyte

o
thousands of genera

Biological Vision

Torsten Wiesel and David Hubel

* Nobel prize-winning neurophysiologists

* Implanted electrical recording equipment within cat skulls, to
measure activity in the primary visual cortex when projected
presenting slides to anesthetized cats (slide edges elicited response)

Biological Vision

Cell Responding to Line Orientation

* Orientation of the line on the left

* Electrical activity over a second on the right

* Vertical line (5% row) generates the largest response

Biological Vision

w

Consecutive Layers of Biological Neurons

e Cartoon has 5 layers: an input layer, 3 hidden layers, and an output
layer

* First hidden layer neurons “fire” in response to simple concepts; e.g.
edges

e Second and third layer neurons fire in response to successwely more
complex concepts; e.g. shapes and textures “imple “comples

cells” cells”
7 =] 5
I _J 7

v _ . . % 71
| l &

e C

Biological Vision

Regions of the Visual Cortex

* VV1: contains simple cells that receive input from
the eyes and detect edge orientations

* V2, V3, and V3a: increasingly complex, abstract
concepts detected

* \V4 specializes in detection of color

* /5 specializes in detection of motion

* Fusiform (spindle shaped) face area specializes
in detection of faces

Machine Vision

Computer Vision Timeline

Light detectors; experiments on cats; handwritten digit detection
(simple and complex cells; convolution and pooling); face detection
(Haar features and adaptive boosting); image classification ...
something for everyone

-543m 1959 1980 1998 2001 2012
L -‘/ L { % = 1
trilobite Hubel & Wiesel
Neocognitron Alc‘;‘Ne!
: / T : ' ?
: s LeNet-5 '
z |
!
S -

i Viola .‘& Jonés
3 | H
@ ovenll omeline
biological vision
@ deep learning
@ traditional ML

Machine Vision

w

* Developed LeNet-5: first convolutional neural network; more accurate
and more efficient for handwritten digit detection, compared to the
Neocognitron

* Yann is Chief Al Scientist at Facebook
* Yoshua is a professor at the University of Montreal [Theano]

Yann LeCun and Yoshua Bengio

Machine Vision

LeNet-5

input
image

—

large simple

features

smaller more
complex
features

— probability
outputs

http://deeplearning.net/software/theano/tutorial/conv arithmetic.html

http://yann.lecun.com/exdb/lenet/

S| LeNet 5 | peseancu
answer: 0

& ¢ Sl I3 T-ET._Er ek,

=k W

E e

1]

TArrEe B

Pl B

T e ayer-5
Layer-3 Input
Layer-1

http://yann.lecun.com/exdb/lenet/
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Machine Vision

Traditional Machine Learning
versus Deep Learning

w

TML

Machine Vision

w

* Haar features used to detect regions, such as the eyes or the bridge of
the nose
* Eye region darker than the upper cheeks
* Nose bridge region is brighter than the eyes

Viola Jones Face Detection

» Adaptive Boosting (AdaBoost) used for classification

Machine Vision

ILSVRC

w

* ImageNet dataset
e Collected by Fei Fei Li and her colleagues at Princeton
* 14 million images; 22,000 classes

* ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset
* 1.4 million images
e 1,000 classes

» Used for both image classification (image contains a person) and object
detection (bounding box contains a person)

Machine Vision

ILSVRC Performance

AlexNet (a convolutional neural network trained by Alex Krizhevsky, a
student of Geoff Hinton) achieved a top-5 error rate of 15.3%

(.6

D]
p—)
<
- 0.4 .
b
O
H _
L
n>) LE
=
a. 02 :
O 1‘5\1&‘.\'N\‘t
4 "
i
2010 2011 2012 2013 2014 2015 2016 2017
e traditional ML
year

e deep learning

Machine Vision

AlexNet Architecture

Convolution blocks followed by fully connected (dense) layers

4

— DOG
— HORSE

— FLOWER

. o T W 4

Sy L L4 1d

input

image

FC

Tensorflow Playground

Customizing Tensorflow Playground

git clone https://github.com/tensorflow/playground
cd playground/src
nano plaground.ts
add below sinY
"r': {f: (x, y) => Math.sqrt(x * x +y *y), label: "r"},
"theta": {f: (x, y) => Math.atan2(y, x), label: "theta"},
nano state.ts
add below first occurrence of sinY
{name: "r", type: Type.BOOLEAN},
{name: "theta", type: Type.BOOLEAN},
add below second occurrence of sinY
r = false;
theta=false;
cd ..
sudo apt install npm
npm i
npm run build

npm run serve

Tensorflow Playground

Spiral Classification with Polar Coordinates

@ A Neural Network Playground x +

C @ Notsecure | 18.236.252.244:8080/#activation=tanh&batchSize=108dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=08inoise=0&networkShape=4,2&seed=05... ¥ NI | G‘f) .

b Epoch Learning rate Activation Regularization Regularization rate Problem type
>
000,401 0.03 - Tamh - None - 0 - Classification .

e

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.002
you want to use? you want to feed in? oY — Y Training loss 0.010
4 neurons 2 neurons
— == N ———
A3 {7}
@ /
P
L
€ - 0
rd
Ratio of training to s . e ., =
'
test data: 50% -
- -0
— [+
-
Noise: 0
2 [}
-
.-{
Batch size: 10 \ This is the autput
_. from one neuron. |
Hover to see it 0
larger.
REGENERATE :

Colors shows
I I
-1

data, neuron and
weight values

[showtestdata [Discretize output

Tensorflow Playground

Reminder About Repeatability

w coderhumor - Follow

Albert Einstein: Insanity Is Doing
the Same Thing Over and Over Again
and Expecting Different Results

Machine learning:

Quick, Draw!

Fun with https://quickdraw.withgoogle. com/

¥ Quick, Draw! x |+
< O & https//quickdraw.withgoogle.com o= @ & -

‘ S|
———

§\il@
% Gc 3 K

A o
i3k o

Con o neurol network learn to recognize dood(ing?

Help teach it by adding your drawings to the
, shared publicly to help with
machine learning research.

https://quickdraw.withgoogle.com/

w

summary

In this chapter, we traced the history of deep learning from its
biological inspiration through to the AlexNet triumph in 2012 that
brought the technique to the fore. All the while, we reiterated that the
hierarchical architecture of deep learning models enables them to
encode increasingly complex representations. To concretize this
concept, we concluded with an interactive demonstration of
hierarchical representations in action by training an artificial neural
network in the TensorFlow Playground. In Chapter 2, we will expand on
the ideas introduced in this chapter by moving from vision applications
to language applications.

[DLI] Machine Vision

* Convolutional Neural Networks
* Pooling Layers

* LeNet-5 in Keras

* AlexNet and VGGNet in Keras

* Residual Networks

* Applications of Machine Vision

Motion of Convolution Filter

Convolutional Neural Networks

1\

Convolutional Neural Networks

Convolution Filter Output Example

01| .09) 22 53| 34 | 06

-1.36| .34 |-1.59 ® S| B2 A

A3 | -69]1.02 H2' | 91 | 34
kernel weights pixel input

w-x = .01 x .53+ .09 x .34+ .22 x .06 z=w-x+b
+—1.36 x .37+ 34 x .82+ —1.59 x .01 = —0.39+ 0
- y __ — —0.394+0.20
L 13% 624 — 69 x .91 4+ 1.02 x .34 T
— —0.19

= —0.3917

Convolutional Neural Networks

Convolution Filter Output Example: Same Padding

RGB

Red Green Blue

0.00 0.00 0.00/0.00 0.00 0.00 0.00 0.00 0.00.0.00 |0.00 0.00 0.00/0.00 0.00

A fllter WI“ 000 0.20:0.40/0.30 0.00 000 0.60:0.60 0.90 000 0.00:0.80:0.40/0.90 0.00
have weights -

Images: |0.000.30 0.90/0.60 0.00 0.00 0.40 0.700.40 0.00 0.000.30 0.10|0.60 0.00

for each Input 0.00 0.90 0.10 0.20 0.00 0.00 0.70 0.50 o.soio.oo’g §o.oo 0.80 0.60 0.40 0.00

Channel 000 0.00:0.00:0.00:0.00 0.00 000 0.00 0.00 000 000000 0.00:0.00 0.00

——— ey

0.10.0.20 0.60 0.60 0.60 0.90 0.80 0.40 0.90

Weights: 0.60/0.80 0.70 0.40 0.70 0.40 0.300.10 0.60| Bias: 0.20

averfereernrioss -

0.50 0.40 0.30 0.70 0.50 0.30 0.80 0.60 0.40

0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 2.64

PSS SOVRs. WESSoR— t 9,. , ,... ¢.. FOPDPNER S !
z value: Z(0.00.0.16 0.28 + 10.00 0.42 0.24. + 10.00 0.08 0.24) +02= i

0.00 0.12 0.27 0.00 0.20 0.21 0,00 0.18 0.04

| SPRRSIEID S

ot [FOSRSRUES SRR Seww—

Convolutional Neural Networks

Same Filter, Different Position

Images:

Weights:

Red

0.00/ 0. 00 0.00 0.00{0.00
0.00[0.20 0.4 0.30|0.00
|

.......................................

—

000 000 000

012 032 0.21

S .& are

015 036 018

+

Green

..........................

0.00

0.90

0.40

Blue

0.00 0.00 0.00

o1oioeo

o-m
- -b

o.w %

0.00 0.00 0.00

0.00 0.

..................

060 060

090

...........

.70:0.40

EOOOEOOO.

024 042

028 035

..

0600.40 ;

000 000 000

‘) "

0.24 004 054

................................

0.24 0 06 0 24

Bias: 0.20

1) voz-

4.67

.........

Convolutional Neural Networks

Same Filter, Last Position

adiatiail il U Dl o adaadans anagananad [AbAbbatalie aatisatatis atantatiats s tsta ST ReR ettt

‘ i < : :
' » * : :
o”.ow-ow.o ooo.
. LN - N L .
3 s i
: . s
3 H :
ety

-.<..------15--—.-r—-»-‘-vvvrt-u'-’v

| 3 : t { 3
0.00:0.20:0.40:0.30:0.00 :0.00:0.60 060 090 000 10.00 0.8050.40;0.90 0.00:
: : : $: : :

i
F EERLEEE TR f --------- ’ '
Images: 0.00 0.30/0.90: 0.60 0.00 10.000.40 0.7030.4050.00 10.00:0.30|0.10 0.60 0.00
............... Desenvenred é..........;:...........r..........),.........(,.......... é"""""“""""""""""'i"""""‘"""""'

ooo 0.90/0.10020 0,00 0.00 0.70/0.50 0.30 0.00 0.0 0.80|0.60 0.40 0.00

..

: ' 3
b | 3 3 1 : H 3 £
: : i 3 : ' $:
000 000 0.00:0.00.0.00 :0.00 0.00 0.00:0.00 0.00 :0.00 0.00|0.00:0.00:0.00
» I . = LN . TN - N WV . N 1N
i s 1 i : i i i

0.10 0.20 0.60

.......... ;.-....,..-4..........

060 080 0.70

060 060 0.90

l 6-

040 070 040

------------------------------ ——

0.80 0.40 0.90

........... esssrsirsafursisriiord

0.30 0.10/0.60

.................................

Bias: 0.20

0.70§ 0.50 :0.30

- ————— g ——— seese.

10.42 0.24 0.00 008 024 000

 epaobtnses waatdasied Silot ety -

264 467 3.58

z values: Z(oos o1s ooo + §ozo§oz1§o.oo§ +

000 000 000 000 000 000

’018 004000) +02= 519 875490

ooo 0.00 0.00 §3.aog4.eo 214'

Convolutional Neural Networks

3 Channel Input to 16 Channel Output

* 16 convolution filters: same padding

32

32

oooooooo
...................

16

32

w

Convolutional Neural Networks

Basic Convolution Filters

m They allow deep learning models to learn to recognize features in a position invari-
ant manner; a single kernel can identify its cognate feature anywhere in the input
data.

m They remain faithful to the two-dimensional structure of images, allowing features
to be identified within their spacial context.

m They significantly reduce the number of parameters required for modeling image
data, yielding higher computational efhiciency.

s Ultmately, they perform machine vision tasks (e.g., image classification) more
accurately.

Careful with the “higher computational efficiency” talk: for example, for “same” padding a single
convolution filter will be applied once for every output position

Nice review of convolutional features: http://bit.ly/DeepViz

http://bit.ly/DeepViz

Convolutional Neural Networks

Activation Map Dimensions

This corresponds to the number of activations per filter
D—F +2P

Activation map = S +1

m [is the size of the image (either width or height, depending on whether you're
calculating the width or height of the activation map).

m [F'is the size of the filter.
= P is the amount of padding.

m S is the stride length.

D—F+2P
g +1

28 —5H+2x2
1

Activation map =

Activation map =

+ 1 ... for MNIST, with a 5x5 filter, “same” padding, and stride 1

Activation map = 28

Pooling Layers

Max Pooling Example

pool_size = (2, 2) with stride = (2, 2)

1 211 =4

BEEE 5 6
3 0 1 e 7 3
7 & @2 A

4 x 4 activation map 2 x 2 activation map

LeNet-5 in Keras

LeNet-5

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
'3“555’; i S2: f. maps o C5: layer
6@14x1 120 F6 layer OUTPUT

RO

‘ Full coanectlon Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connectlon

5x5 convolution filters in layers C1, C3, and C5 [“valid” padding]
2x2 subsampling in layers S2 and S4

http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

LeNet-5 in Keras

Twists for LeNet-5 in Keras

m Because computation is much cheaper today, we opt to use more kernels in our
convolutional layers. More specifically, we include 32 and 64 filters in the first and
second convolutional layers, respectively, whereas the original LeNet-5 had only 6
and 16 in each.

m Also thanks to cheap compute, we are subsampling activations only once (with a

max-pooling layer), whereas LeNet-5 did twice.'

m We leverage innovations like ReLU activations and dropout, which had not yet
been invented at the time of LeNet-5.

LeNet-5 in Keras

CNN Inspired by LeNet-5

Example 10.3 CNN model inspired by LeNet-5

model = Sequential()

first convolutional layer:
model .add(Conv2D (32, kernel_size=(3, 3), activation='relu’,
input_shape=(28, 28, 1)))

second conv layer, with pooling and dropout:

model .add(Conv2D (64, kernel_size=(3, 3), activation="'relu'))
model .add(MaxPooling2D(pool_size=(2, 2)))

model .add (Dropout (0.25))

model .add(Flatten())

dense hidden layer, with dropout:
model .add(Dense (128, activation='relu'))
model .add (Dropout (0.5))

output layer:
model .add(Dense(n_classes, activation='softmax'))

LeNet-5 in Keras

CNN Inspired by LeNet-5

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (Nome, 26, 26, 32) 320
conv2d 2 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d 1 (MaxPooling2 (None, 12, 12, 64) 0
dropout 1 (Dropout) (None, 12, 12, 64) 0
flatten 1 (Flatten) (None, 9216) 0

dense_1 (Dense) (None, 128) 1179776
dropout 2 (Dropout) (None, 128) 0

dense_ 2 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Epoch 9/10
60000/60000 [=====ccesssssssssssmssssssssse=] ~ 305 654us/step - loss: 0.0276 - acc: 0.9911 - val_loss: 0.0260 - val_acc: 0.9927

AlexNet and VGGNet in Keras

General Approach to CNN Design

“conv > conv > pooling” rather than “pooling > conv > conv”

7 r
m put P pooling
rd
l”,
‘ | conv
\‘\\
. . “s. conv
E 2 ©
L -

t{l,‘!)\(‘ |

layer(s)

output

AlexNet and VGGNet in Keras

CNN Inspired by Alex Net

model = Sequential()

first conv-pool block:

model.add(Conv2D(96, kernel_size=(11, 11),
strides=(4, 4), activation='relu’,
input_shape=(224, 224, 3)))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

second conv-pool block:

model.add(Conv2D(256, kernel_size=(5, 5), activation="relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(BatchNormalization())

third conv-pool block:

model.add(Conv2D(256, kernel_size=(3, 3), activation='"relu'))
model.add(Conv2D(384, kernel_size=(3, 3), activation='"relu'))
model.add(Conv2D(384, kernel_size=(3, 3), activation="relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(BatchNormalization())

dense layers:

model.add(Flatten())
model.add(Dense(4096, activation="tanh'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation="tanh'))
model.add(Dropout(0.5))

output layer:
model.add(Dense(17, activation="'softmax'))

The Oxford Flowers dataset has 17 classes:
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

AlexNet and VGGNet in Keras

CNN Inspired by VGGNet

model = Sequential()

model.add(Conv2D(64, 3, activation="relu’,
input_shape=(224, 224, 3)))

model.add(Conv2D(64, 3, activation='relu'))
model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(128, 3, activation="relu'))
model.add(Conv2D(128, 3, activation='relu'))
model.add(MaxPooling2D(2, 2))

(

model.add(BatchNormalization())

model.add(Conv2D(256, 3, activation="relu'))
model.add(Conv2D(256, 3, activation="relu'))
model.add(Conv2D(256, 3, activation="relu'))
model.add(MaxPooling2D(2, 2))

(

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='"relu'))
model.add(Conv2D(512, 3, activation="relu'))
model.add(Conv2D(512, 3, activation="relu'))
model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='"relu'))
model.add(Conv2D(512, 3, activation="relu'))
model.add(Conv2D(512, 3, activation='relu'))
model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))

model.add(Dense(17, activation="'softmax'))

Residual Networks

w

Residual = Desired — Current [Rearranging: Desired = Current + Residual]
* What do we need to add to Current to get Desired
* Shortcut helps reduce vanishing gradients [shortens gradient path]

Computing Residuals

input
!

RELU (CONV)

l

RELU (CONV)

!

RELU (CONV)

l

output

Residual Networks

w

Skip Connections [residual module outputs O]

: _ residual
residual module | skip connection module
| i
skip
C_ connection
res module | skip conn res module| skip conn
| l

res skip res |skip res skip res | skip
module | conn module| conn module | conn module| conn

J QD]

v N

oG Ve

! 7 O S T e T SR N
{nlinlinis](=](=}(=](=}
| ' | | i I ds 1N
Tastt =((it imtiml (al =l
L L (L Ll
DGioiGoitic

i S e~ s . R e

Applications of Machine Vision

Computer Vision Applications

OBJECT SEMANTIC INSTANCE
CLASSIFICATION DETECTION SEGMENTATION SEGMENTATION

S IRIe

“BALLOONS"

Applications of Machine Vision

Object Detection Pipeline

* A Region Of Interest (ROIl) must be identified
e Automatic feature extraction is performed on this region

* The region is classified

Applications of Machine Vision

R-CNN

Region-based Convolutional Neural Network [Berkeley, Girshick et al]:

1. Perform a selective search for regions of interest (ROls) within the image
2. Extract features from these ROls by using a CNN

3. Combine two “traditional” machine learning approaches—called linear
regression and support vector machines—to, respectively, refine the
locations of bounding boxes and classify objects within each of those

boxes

Limitations:
* |t was inflexible: The input size was fixed to a single specific image shape

* It was slow and computationally expensive: Both training and inference are
multistage E_rocesses involving CNNs, linear regression models, and support
vector machines

Applications of Machine Vision

Fast R-CNN

w

* The chief innovation here was the realization that during step 2 of the
R-CNN algorithm, the CNN was unnecessarily being run multiple
times, once for each region of interest

* The Fast R-CNN model has to perform feature extraction using a CNN
only once for a given image (thereby reducing computational
complexity), and then the ROl search and dense layers work together
to finish the object-detection task

Applications of Machine Vision

w

To overcome the ROI-search bottleneck of R-CNN and Fast R-CNN, Ren
and his colleagues [at Microsoft research] had the cunning insight to

leverage the feature activation maps from the model’s CNN for this
step, too

Faster R-CNN

Applications of Machine Vision

Object Detection Output from Faster R-CNN

Applications of Machine Vision

YOLO: You Only Look Once

w

* YOLO begins with a pretrained CNN for feature extraction

* Next, the image is divided into a series of cells, and, for each cell, a number
of bounding boxes and object-classification probabilities are predicted

* Bounding boxes with class probabilities above a threshold value are
selected, and these combine to locate an object within an image

* You can think of the YOLO method as aggregating many smaller bounding
boxes, but only if they have a reasonably good probability of containing any
given object class

Applications of Machine Vision

Instance Segmentation

personl1.00 personil.00

Rersonl.Q personl.00

person,95

sports ball.98

D 41

Applications of Machine Vision

Mask R-CNN

Facebook Al Research (FAIR):

1. Using the existing Faster R-CNN architecture to propose ROIs within the
image that are likely to contain objects

2. An ROl classifier predicting what kind of object exists in the bounding box
while also refining the location and size of the bounding box

3. Using the bounding box to grab the parts of the feature maps from the
underlying CNN that correspond to that part of the image

4. Feeding the feature maps for each ROl into a fully convolutional network
that outputs a mask indicating which pixels correspond to the object in

the image

Applications of Machine Vision

U-Net

w

* The U-Net model consists of a fully convolutional architecture, which
begins with a contracting path that produces successively smaller and
deeper activation maps through multiple convolution and max-
pooling steps

e Subsequently, an expanding path restores these deep activation maps
back to full resolution through multiple upsampling and convolution
steps

* These two paths—the contracting and expanding paths—are
symmetrical (forming a “U” shape), and because of this symmetry the
activation maps from the contracting path can be concatenated onto
those of the expanding path

Applications of Machine Vision

w

e Oxford University’s Visual Geometry Group’s 19-layer CNN used as a
pretrained network (pretrained on ImageNet data) to predict whether
an image contains a hot dog or not

Transfer Learning

* model.add(Dense(2, activation='softmax’, name="predictions’))

Applications of Machine Vision

w

Capsule Networks

Unlike a CNN, a Capsule Network takes positional information into
consideration

Summary

[n this chapter, you learned about convolutional layers, which are specialized to detect
spatial patterns, making them particularly usetul for machine vision tasks. You incorpo-
rated these layers into a CNN inspired by the classic LeNet-5 architecture, enabling you
to surpass the handwritten-digit recognition accuracy of the dense networks you designed
in Part II. The chapter concluded by discussing best practices for building CNNs and
surveying the most noteworthy applications of machine vision algorithms. In the coming
chapter, youll discover that the spatial-pattern recognition capabilities of convolutional
layers are well suited not only to machine vision but also to other tasks.

Concepts

parameters:
= weight w
= bias b
activation a
artificial neurons:
= sigmoid
= tanh
= ReLU
= linear
input layer
hidden layer
output layer
layer types:
= dense (fully connected)
= softmax
= convolutional
= max-pooling

= flatten

cost (loss) functions:

= quadratic (mean squared
error)

= cross-entropy
forward propagation
backpropagation
unstable (especially vanishing)
gradients
Glorot weight initialization
batch normalization
dropout
optimizers:
= stochastic gradient descent
= Adam
optimizer hyperparameters:
= learning rate 7

= batch size

When your face recognition system detects
something you don’t want to know about
|

Age:250-253
Mood:Angry
Genderunknown

https://www.reddit.com/r/FunnyandSad/comments/mvo6dz/age 250253 mood angry gender unknown/

https://www.reddit.com/r/FunnyandSad/comments/mvo6dz/age_250253_mood_angry_gender_unknown/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

w

Reminder About the Convolutional Base

224%224%3

Resolution A Semantics
v

High—ves | 112x112x9b

\)gg%g Low level

S5bx5bx| 2.8 (Vﬁ Mid level

Low—ves | 28x28x25b % High level

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Anchor Boxes (varied aspect ratio and size)

o) o]

e

2:1

e

Xx1.3 [

|

x1.6

w

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

w

Intersection over Union (loU)

Examples
IOU =01
Area of intersection
I0U = .
Area of union
IOU=0.3

IOU=0.6

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Assigning Ground Truth Boxes to Anchors

[OU Matrix Anchors

™
0.0 0.0(0.0)0.0 0.0 [0.0) 0.0 0.0 0.0 |
Ground 0.0 0.0/ 0.0/ 0.0 0.0 [0.3]0.7 0.0 0.0
t::t_:‘ @0 0.0| 0.0 0.3 |0.6] 0.2 0.0 X
0.0 eo\e.e 9.0 0.5/ 0.6 0.1 0.0
0.0 0.0 |0.3]0.0 0.0 0.0\0.0 0.0 0.0
| 0.0 0.0 0.2 0.0 0.0 |0.0 0.0 0.0 0.0
V| 6.0 0.0]e.0]0.0 0.0 Jo.0 [0.0 0.0 6.0
| 0.0 0.0(0.0/ 0.0 0.0 [0.0 Jo.0 0.0 0.0 |

Low values ever\/wkere:j\ /kl,arge max value: anchor
ancthor = backg\round and 3\round truth box ?aired

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Feature Pyramid Network (FPN)

8Ox|120x5|2. ==

Detection
head

40xb0%1024
Sy azgection
20%x30%x2.04%8
e 5_9 E;{;edcion

FPN

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

RetinaNet

b40x960%%

= 80x|20%511
. 80x12.0x256
5 >

Az 4oxbOx|1024
v
ResNetso {

P 5 { heads
backbore 4

A 10x30x1048

-
b
|Ox5%x2.5b mxwi%ﬁ--
d i t heads !
Additional
|a\/e\rs
5x x25b Sx %2156
______ = S|3m0|d
P, > t heads ! alass boxes
Extended

FPN C|assi§icaﬁon Detection
backbone (simyli@ued view) head head

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://paperswithcode.com/method/retinanet

RetinaNet

L / > class+box N
* / subnets ,

g 7= {0 h

class+box
yd
> subnets \\
\
\\

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [20] backbone on top of a feedforward
ResNet architecture [16] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [20] while running at faster speeds.

https://paperswithcode.com/method/retinanet

https://paperswithcode.com/method/focal-loss

Focal Loss

°
CE(p) = —log(p\) 1z 0.5
=0
47 FL(p:) = —(1 — p)" log(p.) v=1
—,.I(- 2
3f ——9=5
7
O

well-classified
examples

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 — p;)” to the standard cross entropy criterion.
Setting v > 0 reduces the relative loss for well-classified examples
(p: > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

https://paperswithcode.com/method/focal-loss

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Non-Max Suppression (NMS)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

