
Convolutional Networks
(ConvNets):

Part I
October 27, 2022

ddebarr@uw.edu

http://cross-entropy.net/ml530/Deep_Learning_2.pdf

mailto:ddebarr@uw.edu
http://cross-entropy.net/ml530/Deep_Learning_2.pdf

Agenda for Tonight

• Homework Review

• [DLI] Chapter 1: Biological and Machine Vision

• [DLI] Chapter 10: Machine Vision

Textbook #1

The cover of our textbook
contains the unofficial mascot of
the book, a trilobite in deep
waters ☺

The trilobite is a 3-section, 3-lobe
marine arthropod that went
extinct 250 million years ago

https://en.wikipedia.org/wiki/Trilobite

https://en.wikipedia.org/wiki/Trilobite

[DLI] Chapter 1: Biological and Machine Vision

• Biological Vision

• Machine Vision
• The Neocognitron

• LeNet-5

• The Traditional Machine Learning
Approach

• ImageNet and the ILSVRC

• AlexNet

• TensorFlow Playground

• Quick, Draw!

• Summary

Authors

• Jon Krohn: chief data scientist at untapt.com

• Grant Beyleveld: data scientist at untapt.com

• Aglae Bassens: Belgian artist based in Paris

Santiago Cajal: 1852 - 1934

Spanish physician who was the first to identify neurons, by examining
thin slices of brain tissue

Biological Vision

Hand-Drawn Neurons from Cajal (1894)

• (a)-(e) illustrates the growth of a neuron

• (A)-(D) contrasts the neurons of a frog, lizard, rat, and human
respectively

Biological Vision

Surge in the Number of Species

Evidence suggests this surge was driven by the development of light
detectors in the trilobyte

Biological Vision

Torsten Wiesel and David Hubel

• Nobel prize-winning neurophysiologists

• Implanted electrical recording equipment within cat skulls, to
measure activity in the primary visual cortex when projected
presenting slides to anesthetized cats (slide edges elicited response)

Biological Vision

Cell Responding to Line Orientation

• Orientation of the line on the left

• Electrical activity over a second on the right

• Vertical line (5th row) generates the largest response

Biological Vision

Consecutive Layers of Biological Neurons

• Cartoon has 5 layers: an input layer, 3 hidden layers, and an output
layer

• First hidden layer neurons “fire” in response to simple concepts; e.g.
edges

• Second and third layer neurons fire in response to successively more
complex concepts; e.g. shapes and textures

Biological Vision

Regions of the Visual Cortex

• V1: contains simple cells that receive input from
the eyes and detect edge orientations

• V2, V3, and V3a: increasingly complex, abstract
concepts detected

• V4 specializes in detection of color

• V5 specializes in detection of motion

• Fusiform (spindle shaped) face area specializes
in detection of faces

Biological Vision

Computer Vision Timeline

Light detectors; experiments on cats; handwritten digit detection
(simple and complex cells; convolution and pooling); face detection
(Haar features and adaptive boosting); image classification …
something for everyone

Machine Vision

Yann LeCun and Yoshua Bengio

• Developed LeNet-5: first convolutional neural network; more accurate
and more efficient for handwritten digit detection, compared to the
Neocognitron

• Yann is Chief AI Scientist at Facebook

• Yoshua is a professor at the University of Montreal [Theano]

Machine Vision

LeNet-5
http://yann.lecun.com/exdb/lenet/

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Machine Vision

http://yann.lecun.com/exdb/lenet/
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Traditional Machine Learning
versus Deep Learning

Machine Vision

Viola Jones Face Detection

• Haar features used to detect regions, such as the eyes or the bridge of
the nose
• Eye region darker than the upper cheeks

• Nose bridge region is brighter than the eyes

• Adaptive Boosting (AdaBoost) used for classification

Machine Vision

ILSVRC

• ImageNet dataset
• Collected by Fei Fei Li and her colleagues at Princeton

• 14 million images; 22,000 classes

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset
• 1.4 million images

• 1,000 classes

• Used for both image classification (image contains a person) and object
detection (bounding box contains a person)

Machine Vision

ILSVRC Performance

AlexNet (a convolutional neural network trained by Alex Krizhevsky, a
student of Geoff Hinton) achieved a top-5 error rate of 15.3%

Machine Vision

AlexNet Architecture

Convolution blocks followed by fully connected (dense) layers

Machine Vision

Customizing Tensorflow Playground

git clone https://github.com/tensorflow/playground

cd playground/src

nano plaground.ts

add below sinY

"r": {f: (x, y) => Math.sqrt(x * x + y * y), label: "r"},

"theta": {f: (x, y) => Math.atan2(y, x), label: "theta"},

nano state.ts

add below first occurrence of sinY

{name: "r", type: Type.BOOLEAN},

{name: "theta", type: Type.BOOLEAN},

add below second occurrence of sinY

r = false;

theta=false;

cd ..

sudo apt install npm

npm i

npm run build

npm run serve

Tensorflow Playground

Spiral Classification with Polar Coordinates

Tensorflow Playground

Reminder About Repeatability

Tensorflow Playground

Fun with https://quickdraw.withgoogle.com/

Quick, Draw!

https://quickdraw.withgoogle.com/

Summary

In this chapter, we traced the history of deep learning from its
biological inspiration through to the AlexNet triumph in 2012 that
brought the technique to the fore. All the while, we reiterated that the
hierarchical architecture of deep learning models enables them to
encode increasingly complex representations. To concretize this
concept, we concluded with an interactive demonstration of
hierarchical representations in action by training an artificial neural
network in the TensorFlow Playground. In Chapter 2, we will expand on
the ideas introduced in this chapter by moving from vision applications
to language applications.

[DLI] Machine Vision

• Convolutional Neural Networks

• Pooling Layers

• LeNet-5 in Keras

• AlexNet and VGGNet in Keras

• Residual Networks

• Applications of Machine Vision

Motion of Convolution Filter

Convolutional Neural Networks

Convolution Filter Output Example

Convolutional Neural Networks

Convolution Filter Output Example: Same Padding

A filter will
have weights
for each input
channel …

Convolutional Neural Networks

Same Filter, Different Position

Convolutional Neural Networks

Same Filter, Last Position

Convolutional Neural Networks

3 Channel Input to 16 Channel Output

• 16 convolution filters: same padding

Convolutional Neural Networks

Basic Convolution Filters

Careful with the “higher computational efficiency” talk: for example, for “same” padding a single
convolution filter will be applied once for every output position

Nice review of convolutional features: http://bit.ly/DeepViz

Convolutional Neural Networks

http://bit.ly/DeepViz

Activation Map Dimensions

This corresponds to the number of activations per filter

… for MNIST, with a 5x5 filter, “same” padding, and stride 1

Convolutional Neural Networks

Max Pooling Example

pool_size = (2, 2) with stride = (2, 2)

Pooling Layers

LeNet-5

http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

5x5 convolution filters in layers C1, C3, and C5 [“valid” padding]
2x2 subsampling in layers S2 and S4

LeNet-5 in Keras

http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

Twists for LeNet-5 in Keras

LeNet-5 in Keras

CNN Inspired by LeNet-5

LeNet-5 in Keras

CNN Inspired by LeNet-5

LeNet-5 in Keras

General Approach to CNN Design

“conv > conv > pooling” rather than “pooling > conv > conv”

AlexNet and VGGNet in Keras

CNN Inspired by Alex Net

model = Sequential()

first conv-pool block:

model.add(Conv2D(96, kernel_size=(11, 11),

strides=(4, 4), activation='relu',

input_shape=(224, 224, 3)))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

second conv-pool block:

model.add(Conv2D(256, kernel_size=(5, 5), activation='relu'))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

third conv-pool block:

model.add(Conv2D(256, kernel_size=(3, 3), activation='relu'))

model.add(Conv2D(384, kernel_size=(3, 3), activation='relu'))

model.add(Conv2D(384, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

dense layers:

model.add(Flatten())

model.add(Dense(4096, activation='tanh'))

model.add(Dropout(0.5))

model.add(Dense(4096, activation='tanh'))

model.add(Dropout(0.5))

output layer:

model.add(Dense(17, activation='softmax'))

AlexNet and VGGNet in Keras

The Oxford Flowers dataset has 17 classes:
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

CNN Inspired by VGGNet

model = Sequential()

model.add(Conv2D(64, 3, activation='relu',

input_shape=(224, 224, 3)))

model.add(Conv2D(64, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(128, 3, activation='relu'))

model.add(Conv2D(128, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(256, 3, activation='relu'))

model.add(Conv2D(256, 3, activation='relu'))

model.add(Conv2D(256, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Flatten())

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(17, activation='softmax'))

AlexNet and VGGNet in Keras

Computing Residuals

Residual = Desired – Current [Rearranging: Desired = Current + Residual]

• What do we need to add to Current to get Desired

• Shortcut helps reduce vanishing gradients [shortens gradient path]

Residual Networks

Skip Connections [residual module outputs 0]

Residual Networks

Computer Vision Applications

Applications of Machine Vision

Object Detection Pipeline

• A Region Of Interest (ROI) must be identified

• Automatic feature extraction is performed on this region

• The region is classified

Applications of Machine Vision

R-CNN

Region-based Convolutional Neural Network [Berkeley, Girshick et al]:
1. Perform a selective search for regions of interest (ROIs) within the image
2. Extract features from these ROIs by using a CNN
3. Combine two “traditional” machine learning approaches—called linear

regression and support vector machines—to, respectively, refine the
locations of bounding boxes and classify objects within each of those
boxes

Limitations:
• It was inflexible: The input size was fixed to a single specific image shape
• It was slow and computationally expensive: Both training and inference are

multistage processes involving CNNs, linear regression models, and support
vector machines

Applications of Machine Vision

Fast R-CNN

• The chief innovation here was the realization that during step 2 of the
R-CNN algorithm, the CNN was unnecessarily being run multiple
times, once for each region of interest

• The Fast R-CNN model has to perform feature extraction using a CNN
only once for a given image (thereby reducing computational
complexity), and then the ROI search and dense layers work together
to finish the object-detection task

Applications of Machine Vision

Faster R-CNN

To overcome the ROI-search bottleneck of R-CNN and Fast R-CNN, Ren
and his colleagues [at Microsoft research] had the cunning insight to
leverage the feature activation maps from the model’s CNN for this
step, too

Applications of Machine Vision

Object Detection Output from Faster R-CNN

Applications of Machine Vision

YOLO: You Only Look Once

• YOLO begins with a pretrained CNN for feature extraction

• Next, the image is divided into a series of cells, and, for each cell, a number
of bounding boxes and object-classification probabilities are predicted

• Bounding boxes with class probabilities above a threshold value are
selected, and these combine to locate an object within an image

• You can think of the YOLO method as aggregating many smaller bounding
boxes, but only if they have a reasonably good probability of containing any
given object class

Applications of Machine Vision

Instance Segmentation

Applications of Machine Vision

Mask R-CNN

Facebook AI Research (FAIR):

1. Using the existing Faster R-CNN architecture to propose ROIs within the
image that are likely to contain objects

2. An ROI classifier predicting what kind of object exists in the bounding box
while also refining the location and size of the bounding box

3. Using the bounding box to grab the parts of the feature maps from the
underlying CNN that correspond to that part of the image

4. Feeding the feature maps for each ROI into a fully convolutional network
that outputs a mask indicating which pixels correspond to the object in
the image

Applications of Machine Vision

U-Net

• The U-Net model consists of a fully convolutional architecture, which
begins with a contracting path that produces successively smaller and
deeper activation maps through multiple convolution and max-
pooling steps

• Subsequently, an expanding path restores these deep activation maps
back to full resolution through multiple upsampling and convolution
steps

• These two paths—the contracting and expanding paths—are
symmetrical (forming a “U” shape), and because of this symmetry the
activation maps from the contracting path can be concatenated onto
those of the expanding path

Applications of Machine Vision

Transfer Learning

• Oxford University’s Visual Geometry Group’s 19-layer CNN used as a
pretrained network (pretrained on ImageNet data) to predict whether
an image contains a hot dog or not

• model.add(Dense(2, activation='softmax', name='predictions’))

Applications of Machine Vision

Capsule Networks

Unlike a CNN, a Capsule Network takes positional information into
consideration

Applications of Machine Vision

Summary

Concepts

https://www.reddit.com/r/FunnyandSad/comments/mvo6dz/age_250253_mood_angry_gender_unknown/

https://www.reddit.com/r/FunnyandSad/comments/mvo6dz/age_250253_mood_angry_gender_unknown/

Reminder About the Convolutional Base

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Anchor Boxes (varied aspect ratio and size)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Intersection over Union (IoU)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Assigning Ground Truth Boxes to Anchors

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

Feature Pyramid Network (FPN)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

RetinaNet

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

RetinaNet

https://paperswithcode.com/method/retinanet

https://paperswithcode.com/method/retinanet

Focal Loss

https://paperswithcode.com/method/focal-loss

https://paperswithcode.com/method/focal-loss

Non-Max Suppression (NMS)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

