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Agenda for Tonight

• Homework Review

• [DLI] Chapter 1: Biological and Machine Vision

• [DLI] Chapter 10: Machine Vision



Textbook #1

The cover of our textbook 
contains the unofficial mascot of 
the book, a trilobite in deep 
waters ☺

The trilobite is a 3-section, 3-lobe 
marine arthropod that went 
extinct 250 million years ago

https://en.wikipedia.org/wiki/Trilobite

https://en.wikipedia.org/wiki/Trilobite


[DLI] Chapter 1: Biological and Machine Vision

• Biological Vision

• Machine Vision
• The Neocognitron

• LeNet-5

• The Traditional Machine Learning 
Approach

• ImageNet and the ILSVRC

• AlexNet

• TensorFlow Playground

• Quick, Draw!

• Summary



Authors

• Jon Krohn: chief data scientist at untapt.com

• Grant Beyleveld: data scientist at untapt.com

• Aglae Bassens: Belgian artist based in Paris



Santiago Cajal: 1852 - 1934

Spanish physician who was the first to identify neurons, by examining 
thin slices of brain tissue

Biological Vision



Hand-Drawn Neurons from Cajal (1894)

• (a)-(e) illustrates the growth of a neuron

• (A)-(D) contrasts the neurons of a frog, lizard, rat, and human 
respectively

Biological Vision



Surge in the Number of Species

Evidence suggests this surge was driven by the development of light 
detectors in the trilobyte

Biological Vision



Torsten Wiesel and David Hubel

• Nobel prize-winning neurophysiologists

• Implanted electrical recording equipment within cat skulls, to 
measure activity in the primary visual cortex when projected 
presenting slides to anesthetized cats (slide edges elicited response)

Biological Vision



Cell Responding to Line Orientation

• Orientation of the line on the left

• Electrical activity over a second on the right

• Vertical line (5th row) generates the largest response

Biological Vision



Consecutive Layers of Biological Neurons

• Cartoon has 5 layers: an input layer, 3 hidden layers, and an output 
layer

• First hidden layer neurons “fire” in response to simple concepts; e.g. 
edges

• Second and third layer neurons fire in response to successively more 
complex concepts; e.g. shapes and textures

Biological Vision



Regions of the Visual Cortex

• V1: contains simple cells that receive input from 
the eyes and detect edge orientations

• V2, V3, and V3a: increasingly complex, abstract 
concepts detected

• V4 specializes in detection of color

• V5 specializes in detection of motion

• Fusiform (spindle shaped) face area specializes 
in detection of faces

Biological Vision



Computer Vision Timeline

Light detectors; experiments on cats; handwritten digit detection 
(simple and complex cells; convolution and pooling); face detection 
(Haar features and adaptive boosting); image classification … 
something for everyone

Machine Vision



Yann LeCun and Yoshua Bengio

• Developed LeNet-5: first convolutional neural network; more accurate 
and more efficient for handwritten digit detection, compared to the 
Neocognitron

• Yann is Chief AI Scientist at Facebook

• Yoshua is a professor at the University of Montreal [Theano]

Machine Vision



LeNet-5
http://yann.lecun.com/exdb/lenet/

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Machine Vision

http://yann.lecun.com/exdb/lenet/
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html


Traditional Machine Learning
versus Deep Learning

Machine Vision



Viola Jones Face Detection

• Haar features used to detect regions, such as the eyes or the bridge of 
the nose
• Eye region darker than the upper cheeks

• Nose bridge region is brighter than the eyes

• Adaptive Boosting (AdaBoost) used for classification

Machine Vision



ILSVRC

• ImageNet dataset
• Collected by Fei Fei Li and her colleagues at Princeton

• 14 million images; 22,000 classes

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset
• 1.4 million images

• 1,000 classes

• Used for both image classification (image contains a person) and object 
detection (bounding box contains a person)

Machine Vision



ILSVRC Performance

AlexNet (a convolutional neural network trained by Alex Krizhevsky, a 
student of Geoff Hinton) achieved a top-5 error rate of 15.3%

Machine Vision



AlexNet Architecture

Convolution blocks followed by fully connected (dense) layers

Machine Vision



Customizing Tensorflow Playground

git clone https://github.com/tensorflow/playground

cd playground/src

nano plaground.ts

# add below sinY

"r": {f: (x, y) => Math.sqrt(x * x + y * y), label: "r"},

"theta": {f: (x, y) => Math.atan2(y, x), label: "theta"},

nano state.ts

# add below first occurrence of sinY

{name: "r", type: Type.BOOLEAN},

{name: "theta", type: Type.BOOLEAN},

# add below second occurrence of sinY

r = false;

theta=false;

cd ..

sudo apt install npm

npm i

npm run build

npm run serve

Tensorflow Playground



Spiral Classification with Polar Coordinates

Tensorflow Playground



Reminder About Repeatability

Tensorflow Playground



Fun with https://quickdraw.withgoogle.com/

Quick, Draw!

https://quickdraw.withgoogle.com/


Summary

In this chapter, we traced the history of deep learning from its 
biological inspiration through to the AlexNet triumph in 2012 that 
brought the technique to the fore.  All the while, we reiterated that the 
hierarchical architecture of deep learning models enables them to 
encode increasingly complex representations.  To concretize this 
concept, we concluded with an interactive demonstration of 
hierarchical representations in action by training an artificial neural 
network in the TensorFlow Playground.  In Chapter 2, we will expand on 
the ideas introduced in this chapter by moving from vision applications 
to language applications.



[DLI] Machine Vision

• Convolutional Neural Networks

• Pooling Layers

• LeNet-5 in Keras

• AlexNet and VGGNet in Keras

• Residual Networks

• Applications of Machine Vision



Motion of Convolution Filter

Convolutional Neural Networks



Convolution Filter Output Example

Convolutional Neural Networks



Convolution Filter Output Example: Same Padding

A filter will 
have weights
for each input
channel …

Convolutional Neural Networks



Same Filter, Different Position

Convolutional Neural Networks



Same Filter, Last Position

Convolutional Neural Networks



3 Channel Input to 16 Channel Output

• 16 convolution filters: same padding

Convolutional Neural Networks



Basic Convolution Filters

Careful with the “higher computational efficiency” talk: for example, for “same” padding a single 
convolution filter will be applied once for every output position

Nice review of convolutional features: http://bit.ly/DeepViz

Convolutional Neural Networks

http://bit.ly/DeepViz


Activation Map Dimensions

This corresponds to the number of activations per filter

… for MNIST, with a  5x5 filter, “same” padding, and stride 1

Convolutional Neural Networks



Max Pooling Example

pool_size = (2, 2) with stride = (2, 2) 

Pooling Layers



LeNet-5

http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

5x5 convolution filters in layers C1, C3, and C5 [“valid” padding]
2x2 subsampling in layers S2 and S4

LeNet-5 in Keras

http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf


Twists for LeNet-5 in Keras

LeNet-5 in Keras



CNN Inspired by LeNet-5

LeNet-5 in Keras



CNN Inspired by LeNet-5

LeNet-5 in Keras



General Approach to CNN Design

“conv > conv > pooling” rather than “pooling > conv > conv”

AlexNet and VGGNet in Keras



CNN Inspired by Alex Net 

model = Sequential()

# first conv-pool block:

model.add(Conv2D(96, kernel_size=(11, 11),

strides=(4, 4), activation='relu',

input_shape=(224, 224, 3)))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

# second conv-pool block:

model.add(Conv2D(256, kernel_size=(5, 5), activation='relu'))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

# third conv-pool block:

model.add(Conv2D(256, kernel_size=(3, 3), activation='relu'))

model.add(Conv2D(384, kernel_size=(3, 3), activation='relu'))

model.add(Conv2D(384, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))

model.add(BatchNormalization())

# dense layers:

model.add(Flatten())

model.add(Dense(4096, activation='tanh'))

model.add(Dropout(0.5))

model.add(Dense(4096, activation='tanh'))

model.add(Dropout(0.5))

# output layer:

model.add(Dense(17, activation='softmax'))

AlexNet and VGGNet in Keras

The Oxford Flowers dataset has 17 classes: 
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

https://www.robots.ox.ac.uk/~vgg/data/flowers/17/


CNN Inspired by VGGNet

model = Sequential()

model.add(Conv2D(64, 3, activation='relu',

input_shape=(224, 224, 3)))

model.add(Conv2D(64, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(128, 3, activation='relu'))

model.add(Conv2D(128, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(256, 3, activation='relu'))

model.add(Conv2D(256, 3, activation='relu'))

model.add(Conv2D(256, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(Conv2D(512, 3, activation='relu'))

model.add(MaxPooling2D(2, 2))

model.add(BatchNormalization())

model.add(Flatten())

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(17, activation='softmax'))

AlexNet and VGGNet in Keras



Computing Residuals

Residual = Desired – Current    [Rearranging: Desired = Current + Residual]

• What do we need to add to Current to get Desired

• Shortcut helps reduce vanishing gradients [shortens gradient path]

Residual Networks



Skip Connections [residual module outputs 0]

Residual Networks



Computer Vision Applications

Applications of Machine Vision



Object Detection Pipeline

• A Region Of Interest (ROI) must be identified

• Automatic feature extraction is performed on this region

• The region is classified

Applications of Machine Vision



R-CNN

Region-based Convolutional Neural Network [Berkeley, Girshick et al]:
1. Perform a selective search for regions of interest (ROIs) within the image
2. Extract features from these ROIs by using a CNN
3. Combine two “traditional” machine learning approaches—called linear 

regression and support vector machines—to, respectively, refine the 
locations of bounding boxes and classify objects within each of those 
boxes

Limitations:
• It was inflexible: The input size was fixed to a single specific image shape
• It was slow and computationally expensive: Both training and inference are 

multistage processes involving CNNs, linear regression models, and support 
vector machines

Applications of Machine Vision



Fast R-CNN

• The chief innovation here was the realization that during step 2 of the 
R-CNN algorithm, the CNN was unnecessarily being run multiple 
times, once for each region of interest

• The Fast R-CNN model has to perform feature extraction using a CNN 
only once for a given image (thereby reducing computational 
complexity), and then the ROI search and dense layers work together 
to finish the object-detection task

Applications of Machine Vision



Faster R-CNN

To overcome the ROI-search bottleneck of R-CNN and Fast R-CNN, Ren 
and his colleagues [at Microsoft research] had the cunning insight to 
leverage the feature activation maps from the model’s CNN for this 
step, too

Applications of Machine Vision



Object Detection Output from Faster R-CNN

Applications of Machine Vision



YOLO: You Only Look Once

• YOLO begins with a pretrained CNN for feature extraction

• Next, the image is divided into a series of cells, and, for each cell, a number 
of bounding boxes and object-classification probabilities are predicted

• Bounding boxes with class probabilities above a threshold value are 
selected, and these combine to locate an object within an image

• You can think of the YOLO method as aggregating many smaller bounding 
boxes, but only if they have a reasonably good probability of containing any 
given object class

Applications of Machine Vision



Instance Segmentation

Applications of Machine Vision



Mask R-CNN

Facebook AI Research (FAIR):

1. Using the existing Faster R-CNN architecture to propose ROIs within the 
image that are likely to contain objects

2. An ROI classifier predicting what kind of object exists in the bounding box 
while also refining the location and size of the bounding box

3. Using the bounding box to grab the parts of the feature maps from the 
underlying CNN that correspond to that part of the image

4. Feeding the feature maps for each ROI into a fully convolutional network 
that outputs a mask indicating which pixels correspond to the object in 
the image

Applications of Machine Vision



U-Net

• The U-Net model consists of a fully convolutional architecture, which 
begins with a contracting path that produces successively smaller and 
deeper activation maps through multiple convolution and max-
pooling steps

• Subsequently, an expanding path restores these deep activation maps 
back to full resolution through multiple upsampling and convolution 
steps

• These two paths—the contracting and expanding paths—are 
symmetrical (forming a “U” shape), and because of this symmetry the 
activation maps from the contracting path can be concatenated onto 
those of the expanding path

Applications of Machine Vision



Transfer Learning

• Oxford University’s Visual Geometry Group’s 19-layer CNN used as a 
pretrained network (pretrained on ImageNet data) to predict whether 
an image contains a hot dog or not

• model.add(Dense(2, activation='softmax', name='predictions’))

Applications of Machine Vision



Capsule Networks

Unlike a CNN, a Capsule Network takes positional information into 
consideration

Applications of Machine Vision



Summary



Concepts



https://www.reddit.com/r/FunnyandSad/comments/mvo6dz/age_250253_mood_angry_gender_unknown/

https://www.reddit.com/r/FunnyandSad/comments/mvo6dz/age_250253_mood_angry_gender_unknown/


Reminder About the Convolutional Base

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/


Anchor Boxes (varied aspect ratio and size)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/


Intersection over Union (IoU)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/


Assigning Ground Truth Boxes to Anchors

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/


Feature Pyramid Network (FPN)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/


RetinaNet

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/


RetinaNet

https://paperswithcode.com/method/retinanet

https://paperswithcode.com/method/retinanet


Focal Loss

https://paperswithcode.com/method/focal-loss

https://paperswithcode.com/method/focal-loss


Non-Max Suppression (NMS)

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

https://learning.oreilly.com/library/view/practical-machine-learning/9781098102357/

