
Exericse 8.6  Elementary properties of 2  regularized logistic regression 

(Source:  Jaakkola.).  Consider minimizing 
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is the average log-likelihood on data set D , for  1, 1iy     [and σ() is the logistic function]. 

Answer the following true / false questions. 

a.  J w  has multiple locally optimal solutions: 

False: this loss function is convex. 

b. Let  ˆ arg min J ww w  be a global optimum.  ŵ  is sparse (has many zero entries): 

False: since 2  regularization penalizes larger weights more heavily, it does not promote 

sparsity [it does not encourage reducing a subset of the weights to zero]. 

c. If the training data is linearly separable, then some weights jw  might become infinite if λ=0: 

True: the closer we get to a step function, the lower our log loss on the training data.  Nota 

Bene: I would strongly encourage the use of regularization, to help avoid overfitting.  It’s not 

common to see super large weights in a well-behaved model. 

d.  , trainDw  always increases as we increase λ: 

False: we expect the log-likelihood of the training data to decrease as we reduce the flexibility of 

the model (by increasing lambda).  The model will eventually exhibit high bias for both the 

training and testing data, as the weights approach 0.  Note: we want to maximize the log-

likelihood of the data, which is equivalent to minimizing the negative log-likelihood of the data. 

e.  , testDw  always increases as we increase λ: 

False: we initially expect the log-likelihood of the testing data to increase (as we reduce 

overfitting); but we also expect the log-likelihood of the data to eventually decrease as we 

reduce the flexibility of the model.  The model will eventually exhibit high bias for both the 

training and testing data, as the weights approach 0. 

 


