Exercise 5.8 MLE and model selection for a 2d discrete distribution
(Source: Jaakkola.)
Let $x \in\{0,1\}$ denote the result of a coin toss ($x=0$ for tails, $x=1$ for heads). The coin is potentially biased, so that heads occurs with probability θ_{1}. Suppose that someone else observes the coin flip and reports to you the outcome, y. But this person is unreliable and only reports the result correctlyu with probability θ_{2}; i.e. $p\left(y \mid x, \theta_{2}\right)$ is given by

$$
\begin{array}{ccc}
& y=0 & y=1 \\
x=0 & \theta_{2} & 1-\theta_{2} \\
x=1 & 1-\theta_{2} & \theta_{2}
\end{array}
$$

Assume that θ_{2} is independent of x and θ_{1}.
a. Write down the joint probability distribution $p(x, y \mid \vec{\theta})$ as a 2×2 table, in terms of $\vec{\theta}=\left(\theta_{1}, \theta_{2}\right)$.

$$
\begin{array}{ccc}
& y=0 & y=1 \\
x=0 & \left(1-\theta_{1}\right) \theta_{2} & \left(1-\theta_{1}\right)\left(1-\theta_{2}\right) \\
x=1 & \theta_{1}\left(1-\theta_{2}\right) & \theta_{1} \theta_{2}
\end{array}
$$

b. Suppose [we] have the following dataset:
$x=(1,1,0,1,1,0,0)$
$y=(1,0,0,0,1,0,1)$
What are the MLEs for θ_{1} and θ_{2} ? Justify your answer. Hint: note that the likelihood function factorizes.
$p(x, y \mid \vec{\theta})=p\left(y \mid x, \theta_{2}\right) p\left(x \mid \theta_{1}\right)$
Since $\log (p(x, y \mid \vec{\theta}))=\sum_{i=1}^{n} \log \left(p\left(y \mid x, \theta_{2}\right)\right)+\sum_{i=1}^{n} \log \left(p\left(x \mid \theta_{1}\right)\right)$, we can maximize the terms independently.

For n independent trials, where the probability of success for a trial is given by $\theta \ldots$
probability $($ Data $\mid \theta)=\theta^{\left(\sum_{i=1}^{n} x_{i}\right)}(1-\theta)^{\left(n-\sum_{i=1}^{n} x_{i}\right)}$
...so ...
$\log ($ probability $($ Data $\mid \theta))=\log \left(\theta^{\left(\sum_{i=1}^{n} x_{i}\right)}(1-\theta)^{\left(n-\sum_{i=1}^{n} x_{i}\right)}\right)=\left(\sum_{i=1}^{n} x_{i}\right) \log (\theta)+\left(n-\sum_{i=1}^{n} x_{i}\right) \log (1-\theta)$
...so...
$\frac{\partial \log (\text { probability }(\text { Data } \mid \theta))}{\partial \theta}=\frac{\sum_{i=1}^{n} x_{i}}{\theta}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-\theta}$
...setting the partial derivative of the log likelihood equal to 0 and solving for $\theta \ldots$
$\frac{\sum_{i=1}^{n} x_{i}}{\theta}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-\theta}=0$
$\frac{\sum_{i=1}^{n} x_{i}}{\theta}=\frac{n-\sum_{i=1}^{n} x_{i}}{1-\theta}$
$\theta(1-\theta) \frac{\sum_{i=1}^{n} x_{i}}{\theta}=\theta(1-\theta) \frac{n-\sum_{i=1}^{n} x_{i}}{1-\theta}$
$(1-\theta) \sum_{i=1}^{n} x_{i}=\theta\left(n-\sum_{i=1}^{n} x_{i}\right)$
$\sum_{i=1}^{n} x_{i}-\theta \sum_{i=1}^{n} x_{i}=\theta n-\theta \sum_{i=1}^{n} x_{i}$
$\sum_{i=1}^{n} x_{i}=\theta n$
$\theta=\frac{\sum_{i=1}^{n} x_{i}}{n}$
$\theta_{1}=$ proportion of x values that are $1=4 / 7$
$\theta_{2}=$ proportion of y values that equal the corresponding x values $=4 / 7$
What is $p\left(D \mid \widehat{\boldsymbol{\theta}}, M_{2}\right)$ where M_{2} denotes this 2-parameter model? (You may leave your answer in fractional form if you wish)

$$
p\left(\mathcal{D} \mid \widehat{\boldsymbol{\theta}}, M_{2}\right)=\left(\frac{4}{7}\right)^{4}\left(1-\frac{4}{7}\right)^{(7-4)}\left(\frac{4}{7}\right)^{4}\left(1-\frac{4}{7}\right)^{(7-4)}=\left(\frac{4}{7}\right)^{8}\left(\frac{3}{7}\right)^{6}=\frac{47,775,744}{678,223,072,849} \approx 0.0000704
$$

c. Now consider a model with 4 parameters, $\vec{\theta}=\left(\theta_{0,0}, \theta_{0,1}, \theta_{1,0}, \theta_{1,1}\right)$, representing $p(x, y \mid \vec{\theta})=\theta_{x, y}$. (Only 3 of these parameters are free to vary, since they must sum to one.) What is the MLE of $\vec{\theta}$? What is $p\left(\mathcal{D} \mid \widehat{\boldsymbol{\theta}}, M_{4}\right)$ where M_{4} denotes this 4-parameter model?

$$
\begin{aligned}
& \vec{\theta}=\left(\frac{2}{7}, \frac{1}{7}, \frac{2}{7}, \frac{2}{7}\right) \\
& p\left(\mathcal{D} \mid \widehat{\boldsymbol{\theta}}, M_{4}\right)=\left(\frac{2}{7}\right)^{2}\left(\frac{1}{7}\right)^{1}\left(\frac{2}{7}\right)^{2}\left(\frac{2}{7}\right)^{2}=\left(\frac{2}{7}\right)^{6} \frac{1}{7}=\frac{64}{823,543} \approx 0.0000777
\end{aligned}
$$

d. Suppose we are not sure which model is correct. We compute the leave-one-out cross validated log likelihood of the 2-parameter model and the 4-parameter model as follows:
$L(m)=\sum_{i=1}^{n} \log \left(p\left(x_{i}, y_{i} \mid m, \widehat{\boldsymbol{\theta}}\left(\mathcal{D}_{-i}\right)\right)\right)$
and $\widehat{\boldsymbol{\theta}}\left(\mathcal{D}_{-i}\right)$ denotes the MLE computed on \mathcal{D} excluding row i. Which model will CV pick and why?
Hint: notice how the table of counts changes when you omit each training case one at a time.
For the 2-parameter model, we have ...
$(\log (3 / 6)+\log (3 / 6))+(\log (3 / 6)+\log (1-4 / 6))+(\log (1-4 / 6)+\log (3 / 6))+(\log (3 / 6)+\log (1-4 / 6))$
$+(\log (3 / 6)+\log (3 / 6))+(\log (1-4 / 6)+\log (3 / 6))+(\log (1-4 / 6)+\log (1-4 / 6)) \approx-12.14$
For the 4-parameter model, we have ...
$\log (1 / 6)+\log (0 / 6) \approx-10.75-\infty=-\infty$
[There's a harsh penalty for saying the observed data could never happen.]
Nota Bene: if we use the training data to report risk, the more complex model wins [not a surprise; we do not use the training data for model selection].
e. Recall that an alternative to CV is to use the BIC score, defined as
$B I C(\mathcal{M}, \mathcal{D}) \triangleq \log \left(p\left(\mathcal{D} \mid \widehat{\boldsymbol{\theta}}_{M L E}\right)\right)-\frac{\operatorname{dof}(\mathcal{M})}{2} \log (N)$
where $\operatorname{dof}(\mathcal{M})$ is the number of free parameters in the model. Compute the BIC scores for both models (use log base e). Which model does BIC prefer?
For the 2-parameter model we have ...
$\log \left(\frac{47,775,744}{678,223,072,849}\right)-\frac{2}{2} \log (7) \approx-11.51$
For the 4-parameter model we have ...
$\log \left(\frac{64}{823,543}\right)-\frac{3}{2} \log (7) \approx-12.38$
Both Leave-One-Out Cross Validation (LOOCV) and the Bayesian Information Criterion (BIC) prefer the simpler 2-parameter model [values closer to zero are preferred].

