
Exercise 5.8  MLE and model selection for a 2d discrete distribution 

(Source: Jaakkola.) 

Let x ∈ {0,1} denote the result of a coin toss (x = 0 for tails, x = 1 for heads).  The coin is potentially 

biased, so that heads occurs with probability 𝜃1.  Suppose that someone else observes the coin flip and 

reports to you the outcome, 𝑦.  But this person is unreliable and only reports the result correctlyu with 

probability 𝜃2; i.e. 𝑝(𝑦|𝑥, 𝜃2) is given by  

𝑦 = 0 𝑦 = 1
𝑥 = 0 𝜃2 1 − 𝜃2

𝑥 = 1 1 − 𝜃2 𝜃2

 

Assume that 𝜃2 is independent of 𝑥 and 𝜃1. 

a. Write down the joint probability distribution 𝑝(𝑥, 𝑦|𝜃) as a 2x2 table, in terms of 𝜃 = (𝜃1, 𝜃2). 

𝑦 = 0 𝑦 = 1

𝑥 = 0 (1 − 𝜃1)𝜃2 (1 − 𝜃1)(1 − 𝜃2)

𝑥 = 1 𝜃1(1 − 𝜃2) 𝜃1𝜃2

 

b. Suppose [we] have the following dataset: 

𝑥 = (1, 1, 0, 1, 1, 0, 0)  

𝑦 = (1, 0, 0, 0, 1, 0, 1) 

What are the MLEs for 𝜃1 and 𝜃2?  Justify your answer.  Hint: note that the likelihood function 

factorizes. 

𝑝(𝑥, 𝑦|𝜃) = 𝑝(𝑦|𝑥, 𝜃2)𝑝(𝑥|𝜃1) 

Since 𝑙𝑜𝑔 (𝑝(𝑥, 𝑦|𝜃)) = ∑ 𝑙𝑜𝑔(𝑝(𝑦|𝑥, 𝜃2))𝑛
𝑖=1 + ∑ 𝑙𝑜𝑔(𝑝(𝑥|𝜃1))𝑛

𝑖=1 , we can maximize the terms 

independently. 
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For  independent trials, where the probability of success for a trial is given by ...

( | ) 1

...so...

log ( | ) log 1 log

n n
ii ii

n n
ii ii

x n x

x nn x

ii

n

probability Data

probability Data x



  

   

 

 







  

      
 

    

 

1

1 1

1 1

1 1

log 1

...so...

log ( | )

1

...setting the partial derivative of the log likelihood equal to 0 and solving for ...
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𝜃1 = proportion of 𝑥 values that are 1 = 4 / 7 

𝜃2 = proportion of 𝑦 values that equal the corresponding 𝑥 values = 4 / 7 

What is 𝑝(𝐷|𝜽̂, 𝑀2) where 𝑀2 denotes this 2-parameter model?  (You may leave your answer in 

fractional form if you wish) 

𝑝(𝒟|𝜽̂, 𝑀2) = (
4

7
)

4

(1 −
4

7
)

(7−4)

(
4

7
)

4

(1 −
4

7
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(7−4)

= (
4

7
)

8

(
3

7
)

6

=
47,775,744

678,223,072,849
≈ 0.0000704 

c. Now consider a model with 4 parameters, 𝜃 = (𝜃0,0, 𝜃0,1, 𝜃1,0, 𝜃1,1), representing 𝑝(𝑥, 𝑦|𝜃) = 𝜃𝑥,𝑦.  

(Only 3 of these parameters are free to vary, since they must sum to one.)  What is the MLE of 𝜃?  

What is 𝑝(𝒟|𝜽̂, 𝑀4) where 𝑀4 denotes this 4-parameter model? 

𝜃 = (
2

7
,
1

7
,
2

7
,
2

7
) 

𝑝(𝒟|𝜽̂, 𝑀4) = (
2
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= (
2

7
)

6 1

7
=

64

823,543
≈ 0.0000777 



d. Suppose we are not sure which model is correct.  We compute the leave-one-out cross validated log 

likelihood of the 2-parameter model and the 4-parameter model as follows: 

𝐿(𝑚) = ∑ 𝑙𝑜𝑔 (𝑝 (𝑥𝑖, 𝑦𝑖|𝑚, 𝜽̂(𝒟−𝑖)))

𝑛

𝑖=1

 

and 𝜽̂(𝒟−𝑖) denotes the MLE computed on 𝒟 excluding row 𝑖.  Which model will CV pick and why?  

Hint: notice how the table of counts changes when you omit each training case one at a time. 

For the 2-parameter model, we have … 

(log(3/6)+log(3/6)) + (log(3/6)+log(1-4/6)) + (log(1-4/6)+log(3/6)) + (log(3/6)+log(1-4/6)) 

+ (log(3/6)+log(3/6)) + (log(1-4/6)+log(3/6)) + (log(1-4/6)+log(1-4/6)) ≈ -12.14 

For the 4-parameter model, we have … 

log(1/6) + log(1/6) + log(1/6) + log(1/6) + log(1/6) + log(1/6) + log(0/6) ≈ -10.75 - ∞ = - ∞ 

[There’s a harsh penalty for saying the observed data could never happen.] 

Nota Bene: if we use the training data to report risk, the more complex model wins [not a surprise; 

we do not use the training data for model selection].  

e. Recall that an alternative to CV is to use the BIC score, defined as 

𝐵𝐼𝐶(ℳ, 𝒟) ≜ 𝑙𝑜𝑔 (𝑝(𝒟|𝜽̂𝑀𝐿𝐸)) −
𝑑𝑜𝑓(ℳ)

2
log (𝑁) 

where 𝑑𝑜𝑓(ℳ) is the number of free parameters in the model.  Compute the BIC scores for both 

models (use log base ℯ).  Which model does BIC prefer? 

For the 2-parameter model we have … 

𝑙𝑜𝑔 (
47,775,744

678,223,072,849
) −

2

2
𝑙𝑜𝑔(7) ≈ −11.51 

For the 4-parameter model we have … 

𝑙𝑜𝑔 (
64

823,543
) −

3

2
𝑙𝑜𝑔(7) ≈ −12.38 

Both Leave-One-Out Cross Validation (LOOCV) and the Bayesian Information Criterion (BIC) prefer 

the simpler 2-parameter model [values closer to zero are preferred]. 

 


