Probability

ddebarr@uw.edu
2016-04-14

Agenda

- Fundamentals
- Discrete Distributions
- Continuous Distributions
- Joint Distributions
- Transformations
- Monte Carlo Approximation
- Information Theory

Discrete Random Variables

PMF: Probability Mass Function

maximum entropy
minimum entropy
("uniform" distribution)

Bayes' Rule: Conditional Probability

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}=\frac{p(X=x) p(Y=y \mid X=x)}{\sum_{x^{\prime}} p\left(X=x^{\prime}\right) p\left(Y=y \mid X=x^{\prime}\right)}
$$

Can we describe precision and recall as probabilities?

Medical Diagnosis Example

- Given likelihood of cancer prediction and prior for actual cancer ...
- p (prediction $=$ cancer \mid actual $=$ cancer $)=0.8$
- $\mathrm{p}($ prediction $=$ cancer \mid actual $=$ not cancer $)=0.1$
- $p($ actual $=$ cancer $)=0.004$
- Derive posterior ...
- p (actual = cancer \mid prediction $=$ cancer $)$
- Bayes' rule says posterior is ...
$=$ (likelihood ${ }^{*}$ prior) / evidence
$=(0.8 * 0.004) /(0.8 * 0.004+0.1 * 0.996)$
$=0.0032 /(0.0032+0.0996)$
- Generative classifier: $\quad p(y=c \mid \mathbf{x})=\frac{p(y=c) p(\mathbf{x} \mid y=c)}{\sum_{c^{\prime}} p\left(y=c^{\prime} \mid \boldsymbol{\theta}\right) p\left(\mathbf{x} \mid y=c^{\prime}\right)}$

Independence and Conditional Independence

Unconditionally independent:

$$
X \perp Y \Longleftrightarrow p(X, Y)=p(X) p(Y)
$$

Conditionally independent:

$$
X \perp Y \mid Z \Longleftrightarrow p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z)
$$

Z: Sinus Inflammation

Conditional Random Variables

CDF: Cumulative Distribution Function

PDF: Probability Density Function

Quantiles

- Median (aka $2^{\text {nd }}$ quartile)
- $50^{\text {th }}$ percentile: at least 50% of the values are less than or equal to the median; and at least 50% of the values are greater than or equal to the median [what happens if all values are the same?]
- More robust measure of location [compared to mean]
- $1^{\text {st }}$ and $3^{\text {rd }}$ Quartile: $25^{\text {th }}$ and $75^{\text {th }}$ percentiles respectively
- InterQuartile Range (IQR): more robust measure of dispersion [comared to standard deviation]
- Quantiles are also useful for confidence intervals
- The capital "phi" (pronounced "fee", by me) is commonly used to denote the Gaussian CDF; so the inverse can be used to denote the bounds of a 95% confidence interval for a sample mean

$$
\left(\Phi^{-1}(0.025), \Phi^{-1}(0.975)\right)=(-1.96,1.96)
$$

Mean and Variance

- Mean [aka expected value]

$$
\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x p(x) \quad \mathbb{E}[X] \triangleq \int_{\mathcal{X}} x p(x) d x
$$

- Variance

$$
\begin{aligned}
\operatorname{var}[X] & \triangleq \mathbb{E}\left[(X-\mu)^{2}\right]=\int(x-\mu)^{2} p(x) d x \\
& =\int x^{2} p(x) d x+\mu^{2} \int p(x) d x-2 \mu \int x p(x) d x=\mathbb{E}\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

- Variance of a mean

$$
\operatorname{var}\left[\frac{\sum_{i=1}^{n} x_{i}}{n}\right]=\frac{\operatorname{var}\left[\sum_{i=1}^{n} x_{i}\right]}{n^{2}}=\frac{n * \operatorname{var}\left[x_{i}\right]}{n^{2}}=\frac{\operatorname{var}\left[x_{i}\right]}{n}
$$

Binomial and Bernoulli Distributions

Independent trials with two possible outcomes; e.g. flipping a coin

$\operatorname{Bin}(k \mid n, \theta) \triangleq\binom{n}{k} \theta^{k}(1-\theta)^{n-k}$

$$
\binom{n}{k} \triangleq \frac{n!}{(n-k)!k!}
$$

$\operatorname{Ber}(x \mid \theta)=\theta^{\mathbb{I}(x=1)}(1-\theta)^{\mathbb{I}(x=0)}$

Multinomial and Multinoulli Distributions

Independent trials with more than two possible outcomes; e.g. rolling a die

$$
\operatorname{Mu}(\mathbf{x} \mid n, \boldsymbol{\theta}) \triangleq\binom{n}{x_{1} \ldots x_{K}} \prod_{j=1}^{K} \theta_{j}^{x_{j}} \quad\binom{n}{x_{1} \ldots x_{K}} \triangleq \frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}
$$

$$
\operatorname{Mu}(\mathbf{x} \mid 1, \boldsymbol{\theta})=\prod_{j=1}^{K} \theta_{j}^{\mathbb{I}\left(x_{j}=1\right)}
$$

Name	n	K	x
Multinomial	-	-	$\mathbf{x} \in\{0,1, \ldots, n\}^{K}, \sum_{k=1}^{K} x_{k}=n$
Multinoulli	1	-	$\mathbf{x} \in\{0,1\}^{K}, \sum_{k=1}^{K} x_{k}=1$ (1-of- K encoding)
Binomial	-	1	$x \in\{0,1, \ldots, n\}$
Bernoulli	1	1	$x \in\{0,1\}$

DNA Sequence Motifs

```
\leqslant \text { sequence } \rightarrow
atagccggtacgggca
ttagctgcaacccgca
tcagccacttagaggca
ataaccgcgaccgca
ttagccgctaagggta
taagccctcgtacgta
ttagccogttacgggcc
atatccggtacaggta
atagcagggtaccgaa
acatccgtgacggaa
```

$$
\mathbf{N}_{t}=\left(\sum_{i=1}^{N} \mathbb{I}\left(X_{i t}=1\right), \sum_{i=1}^{N} \mathbb{I}\left(X_{i t}=2\right), \sum_{i=1}^{N} \mathbb{I}\left(X_{i t}=3\right), \sum_{i=1}^{N} \mathbb{I}\left(X_{i t}=4\right)\right)
$$

$$
\hat{\boldsymbol{\theta}}_{t}=\mathbf{N}_{t} / N
$$

Poisson Distribution

Count of independent events during some time interval; e.g. number of goals during a soccer match

$$
\operatorname{Poi}(x \mid \lambda)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

Empirical Distribution

$$
\begin{array}{ll}
p_{\mathrm{emp}}(A) \triangleq \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}(A) & \delta_{x}(A)= \begin{cases}0 & \text { if } x \notin A \\
1 & \text { if } x \in A\end{cases} \\
p(x)=\sum_{i=1}^{N} w_{i} \delta_{x_{i}}(x) & 0 \leq w_{i} \leq 1 \text { and } \sum_{i=1}^{N} w_{i}=1
\end{array}
$$

Gaussian, Student, and Laplace Distribution

- Gaussian

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \triangleq \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} \quad \Phi\left(x ; \mu, \sigma^{2}\right) \triangleq \int_{-\infty}^{x} \mathcal{N}\left(z \mid \mu, \sigma^{2}\right) d z \quad z=(x-\mu) / \sigma
$$

- Student's t

$$
\mathcal{T}\left(x \mid \mu, \sigma^{2}, \nu\right) \propto\left[1+\frac{1}{\nu}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\left(\frac{\nu+1}{2}\right)}
$$

- Laplace

$$
\operatorname{Lap}(x \mid \mu, b) \triangleq \frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)
$$

Gaussian, Student, and Laplace Distribution

$\mathcal{N}(0,1), \mathcal{T}(0,1,1)$ and $\operatorname{Lap}(0,1 / \sqrt{2})$
$\log (X)$

Effect of Outliers

without outliers

with outliers
Gaussian: location affected
Student t and Laplace: more robust

Gamma Distribution

$$
\mathrm{Ga}(T \mid \text { shape }=a, \text { rate }=b) \triangleq \frac{b^{a}}{\Gamma(a)} T^{a-1} e^{-T b}
$$

rainfall ~ Ga(0.44, 1.97)

$$
\operatorname{Expon}(x \mid \lambda) \triangleq \mathrm{Ga}(x \mid 1, \lambda)
$$

$$
\operatorname{Erlang}(x \mid \lambda)=\operatorname{Ga}(x \mid 2, \lambda)
$$

$$
\chi^{2}(x \mid \nu) \triangleq \mathrm{Ga}\left(x \left\lvert\, \frac{\nu}{2}\right., \frac{1}{2}\right)
$$

Beta Distribution

$\operatorname{Beta}(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} \quad B(a, b) \triangleq \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$

Used to model the probability parameter for a Bernoulli trial:

* ' a ' and ' b ' can be used as weights for successful and unsuccessful outcomes
* larger weights yield a more concentrated distribution

Pareto (Power Law) Distribution

Pareto distribution

$\operatorname{Pareto}(x \mid k, m)=k m^{k} x^{-(k+1)} \mathbb{I}(x \geq m)$

$\log p(x)=a \log x+k$ long, heavy tail

Degenerate PDF

- It's a constant [not actually a random variable]

$$
\lim _{\sigma^{2} \rightarrow 0} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\delta(x-\mu)
$$

- Dirac delta function

$$
\delta(x)= \begin{cases}\infty & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{cases}
$$

Covariance

$$
\operatorname{cov}[X, Y] \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

$$
\operatorname{cov}[\mathbf{x}] \triangleq \mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{T}\right]
$$

$$
=\left(\begin{array}{cccc}
\operatorname{var}\left[X_{1}\right] & \operatorname{cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{cov}\left[X_{1}, X_{d}\right] \\
\operatorname{cov}\left[X_{2}, X_{1}\right] & \operatorname{var}\left[X_{2}\right] & \cdots & \operatorname{cov}\left[X_{2}, X_{d}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left[X_{d}, X_{1}\right] & \operatorname{cov}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{var}\left[X_{d}\right]
\end{array}\right)
$$

Correlation

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}}
$$

$$
\mathbf{R}=\left(\begin{array}{cccc}
\operatorname{corr}\left[X_{1}, X_{1}\right] & \operatorname{corr}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{1}, X_{d}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{corr}\left[X_{d}, X_{1}\right] & \operatorname{corr}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{d}, X_{d}\right]
\end{array}\right)
$$

Correlation Examples

1.0	0.8	0.4	0.0	-0.4	-0.8	-1.0
	\%		4		多	
1.0	1.0	1.0	0.0	-1.0	-1.0	-1.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%					\%	U

Correlation Doesn’t Imply Causation!

"Correlation doesn't imply causation, but it does waggle its eyebrows suggestively and gesture furtively while mouthing 'look over there'."

Multi-variate Gaussian

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \triangleq \frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

Dirichlet Distribution [3 outcomes]

Samples from Dirichlet Distribution

Transformation: Univariate Change of Variable

- Density function for transformed variable:

$$
p_{y}(y)=p_{x}(x)\left|\frac{d x}{d y}\right|
$$

- Example:

$$
Y=X^{2} \quad X \sim U(-1,1) \quad p_{y}(y)=\frac{1}{2} y^{-\frac{1}{2}}
$$

Transformation: Multivariate Change of Variables

Transformation of x, y to r, θ
area of the patch is $r^{*} d \theta{ }^{*} d r$, where $r^{*} d \theta$ is the length of the arc
$p_{r, \theta}(r, \theta) d r d \theta=p_{x_{1}, x_{2}}(r \cos \theta, r \sin \theta) r d r d \theta$

Central Limit Theorem

$$
\text { if } \quad S_{N}=\sum_{i=1}^{N} X_{i} \quad \text { then } \quad Z_{N} \triangleq \frac{S_{N}-N \mu}{\sigma \sqrt{N}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{N}} \quad \begin{aligned}
& \text { converges to Gaussian(0, 1) } \\
& \text { as } \mathrm{n} \text { goes to infinity }
\end{aligned}
$$

The sampling distribution of the mean value rapidly converges to a Gaussian distribution

Monte Carlo Integration

$$
\int \frac{1}{2 \sqrt{y}} d y=\sqrt{y}
$$

http://integrals.wolfram.com/

Example: Instead integrating the density function, we can generate random samples of the transformed variable ...

$$
\frac{1}{S}\left|\left\{x_{s} \leq c\right\}\right| \rightarrow P(X \leq c)
$$

Monte Carlo Approximation of π

$$
\begin{aligned}
I & =\int_{-r}^{r} \int_{-r}^{r} \mathbb{I}\left(x^{2}+y^{2} \leq r^{2}\right) d x d y \\
I & =(2 r)(2 r) \iint f(x, y) p(x) p(y) d x d y \\
& =4 r^{2} \iint f(x, y) p(x) p(y) d x d y \\
& \approx 4 r^{2} \frac{1}{S} \sum_{s=1}^{S} f\left(x_{s}, y_{s}\right) \\
\pi & =I /\left(r^{2}\right)
\end{aligned}
$$

$$
\hat{\sigma}^{2}=\frac{1}{S} \sum_{s=1}^{S}\left(f\left(x_{s}\right)-\hat{\mu}\right)^{2} \quad P\left\{\mu-1.96 \frac{\hat{\sigma}}{\sqrt{S}} \leq \hat{\mu} \leq \mu+1.96 \frac{\hat{\sigma}}{\sqrt{S}}\right\} \approx 0.95
$$

Monte Carlo Approximation for Gaussian(1.5, .25)

Entropy

$\mathbb{H}(X) \triangleq-\sum_{k=1}^{K} p(X=k) \log _{2} p(X=k)$

Kullback-Leibler (KL) Divergence

- Defined as the average number of bits needed to encode data, caused by using distribution " q " to encode the data rather than distribution "p"

$$
\mathbb{K} \mathbb{L}(p \| q)=\sum_{k} p_{k} \log p_{k}-\sum_{k} p_{k} \log q_{k}=-\mathbb{H}(p)+\mathbb{H}(p, q)
$$

- The second term is known as cross entropy: measuring the dissimilarity of the two distributions

Mutual Information

- Measures the strength of the relationship between variables
- Expected value of the ratio of the joint probability to the product of priors

$$
\mathbb{I}(X ; Y) \triangleq \mathbb{K} \mathbb{L}(p(X, Y) \| p(X) p(Y))=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

$$
\mathbb{I}(X ; Y) \geq 0
$$

- Mutual information can capture relationships missed by Pearson's correlation coefficient

Maximal Information Coefficient (MIC)

Spectral Clustering

Spectral Clustering References

- Section 25.4 of our text
- PMTK demo:
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/(25) -Clustering/spectralClusteringDemo.html
- Ng, Jordan, Weiss NIPS 2001 paper
- http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf
- Scikit-learn documentation
- http://scikit-
learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html\#s klearn.cluster.SpectralClustering

Spectral Clustering Algorithm

Given a set of points $S=\left\{s_{1}, \ldots, s_{n}\right\}$ in \mathbb{R}^{l} that we want to cluster into k subsets:

1. Form the affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{i j}=\exp \left(-\left\|s_{i}-s_{j}\right\|^{2} / 2 \sigma^{2}\right)$ if $i \neq j$, and $A_{i i}=0$.
2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A 's i-th row, and construct the matrix $L=D^{-1 / 2} A D^{-1 / 2}$.
3. Find $x_{1}, x_{2}, \ldots, x_{k}$, the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix $X=$ $\left[x_{1} x_{2} \ldots x_{k}\right] \in \mathbb{R}^{n \times k}$ by stacking the eigenvectors in columns.
4. Form the matrix Y from X by renormalizing each of X 's rows to have unit length (i.e. $\left.Y_{i j}=X_{i j} /\left(\sum_{j} X_{i j}^{2}\right)^{1 / 2}\right)$.
5. Treating each row of Y as a point in \mathbb{R}^{k}, cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
6. Finally, assign the original point s_{i} to cluster j if and only if row i of the matrix Y was assigned to cluster j.

Compared to Other Methods

- Primary Advantage
- Can be used to generate clusters with arbitrary shapes
- Primary Disadvantage
- Cannot generalize to unseen data
- Focus is on spectral representation
- K-means is often used for clustering the spectral representation; but other clustering methods can be used

Matlab Code for Spectral Representation

```
sigma = 0.1;
num_clusters = 2;
S1S2 = -2 * data * data';
SS = sum(data.^2,2);
A = exp(- (S1S2+repmat(SS,1,length(SS))+repmat(SS',length(SS),1)) / (2*sigma^2));
D = diag(1 ./ sqrt(sum(A, 2)));
L = D * A * D;
[X,D] = eigs(L, num_clusters);
Y = X ./ repmat(sqrt(sum(X.^2, 2)), 1, num_clusters);
```


Spectral Representation for 6 Observations

>> A					
$\mathrm{A}=$					
1.0000	0.2132	0.4195	0.0000	0.0000	0.0000
0.2132	1.0000	0.0933	0.0000	0.0000	0.0000
0.4195	0.0933	1.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	1.0000	0.2516	0.3107
0.0000	0.0000	0.0000	0.2516	1.0000	0.9560
0.0000	0.0000	0.0000	0.3107	0.9560	1.0000
>> D					
$\mathrm{D}=$					
0.7826	0	0	0	0	0
0	0.8748	0	0	0	0
0	0	0.8130	0	0	0
0	0	0	0.8000	0	0
0	0	0	0	0.6730	0
0	0	0	0	0	0.6642
>> L					
$\mathrm{L}=$					
0.6125	0.1460	0.2669	0.0000	0.0000	0.0000
0.1460	0.7654	0.0664	0.0000	0.0000	0.0000
0.2669	0.0664	0.6610	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.6401	0.1355	0.1651
0.0000	0.0000	0.0000	0.1355	0.4530	0.4274
0.0000	0.0000	0.0000	0.1651	0.4274	0.4412

```
>> X
X =
\begin{tabular}{rr}
-0.6019 & 0.0336 \\
-0.5385 & 0.0300 \\
-0.5794 & 0.0323 \\
0.0557 & -0.5080 \\
0.0662 & -0.6038 \\
0.0671 & -0.6118
\end{tabular}
>> Y
Y =
\begin{tabular}{rr}
-0.9985 & 0.0557 \\
-0.9985 & 0.0557 \\
-0.9985 & 0.0557 \\
0.1090 & -0.9940 \\
0.1090 & -0.9940 \\
0.1090 & -0.9940
\end{tabular}
```

