

Probability

ddebarr@uw.edu

2016-04-14

W

Agenda

- Fundamentals
- Discrete Distributions
- Continuous Distributions
- Joint Distributions
- Transformations
- Monte Carlo Approximation
- Information Theory

Discrete Random Variables

PMF: Probability Mass Function

maximum entropy ("uniform" distribution) minimum entropy
("degenerate distribution": constant)

Bayes' Rule: Conditional Probability

$$p(X = x | Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)} = \frac{p(X = x)p(Y = y | X = x)}{\sum_{x'} p(X = x')p(Y = y | X = x')}$$

Can we describe precision and recall as probabilities?

Medical Diagnosis Example

- Given likelihood of cancer prediction and prior for actual cancer ...
 - p(prediction = cancer | actual = cancer) = 0.8
 - p(prediction = cancer | actual = not cancer) = 0.1
 - p(actual = cancer) = 0.004
- Derive posterior ...
 - p(actual = cancer | prediction = cancer)
- Bayes' rule says posterior is ...
 - = (likelihood * prior) / evidence
 - = (0.8 * 0.004) / (0.8 * 0.004 + 0.1 * 0.996)
 - = 0.0032 / (0.0032 + 0.0996)
 - = 0.0312
- Generative classifier:

$$p(y = c | \mathbf{x}) = \frac{p(y = c)p(\mathbf{x} | y = c)}{\sum_{c'} p(y = c' | \boldsymbol{\theta})p(\mathbf{x} | y = c')}$$

Fundamentals

Independence and Conditional Independence

Unconditionally independent:

Conditionally independent:

P(X)

Conditional Random Variables

CDF: Cumulative Distribution Function

PDF: Probability Density Function

Quantiles

- Median (aka 2nd quartile)
 - 50th percentile: at least 50% of the values are less than or equal to the median; and at least 50% of the values are greater than or equal to the median [what happens if all values are the same?]
 - More robust measure of location [compared to mean]
- 1st and 3rd Quartile: 25th and 75th percentiles respectively
 - InterQuartile Range (IQR): more robust measure of dispersion [comared to standard deviation]
- Quantiles are also useful for confidence intervals
 - The capital "phi" (pronounced "fee", by me) is commonly used to denote the Gaussian CDF; so the inverse can be used to denote the bounds of a 95% confidence interval for a sample mean

$$(\Phi^{-1}(0.025), \Phi^{-1}(0.975)) = (-1.96, 1.96)$$

W

Mean and Variance

• Mean [aka expected value] $\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x \ p(x) \qquad \qquad \mathbb{E}[X] \triangleq \int_{\mathcal{X}} x \ p(x) dx$ • Variance

$$\operatorname{var}\left[X\right] \triangleq \mathbb{E}\left[(X-\mu)^2\right] = \int (x-\mu)^2 p(x) dx$$
$$= \int x^2 p(x) dx + \mu^2 \int p(x) dx - 2\mu \int x p(x) dx = \mathbb{E}\left[X^2\right] - \mu^2$$

• Variance of a mean

$$var\left[\frac{\sum_{i=1}^{n} x_i}{n}\right] = \frac{var[\sum_{i=1}^{n} x_i]}{n^2} = \frac{n * var[x_i]}{n^2} = \frac{var[x_i]}{n}$$

Binomial and Bernoulli Distributions

Independent trials with two possible outcomes; e.g. flipping a coin

$$Ber(x|\theta) = \theta^{\mathbb{I}(x=1)}(1-\theta)^{\mathbb{I}(x=0)}$$

Multinomial and Multinoulli Distributions

Independent trials with more than two possible outcomes; e.g. rolling a die

$$\operatorname{Mu}(\mathbf{x}|n,\boldsymbol{\theta}) \triangleq \binom{n}{x_1 \dots x_K} \prod_{j=1}^K \theta_j^{x_j}$$

$$\binom{n}{x_1 \dots x_K} \triangleq \frac{n!}{x_1! x_2! \cdots x_K!}$$

$$\operatorname{Mu}(\mathbf{x}|1, \boldsymbol{\theta}) = \prod_{j=1}^{K} \theta_{j}^{\mathbb{I}(x_{j}=1)}$$

Name	n	K	x
Multinomial	-	-	$\mathbf{x} \in \{0,1,\ldots,n\}^K$, $\sum_{k=1}^K x_k = n$
Multinoulli	1	-	$\mathbf{x} \in \{0,1\}^K$, $\sum_{k=1}^K x_k = 1$ (1-of-K encoding)
			$x \in \{0, 1, \dots, n\}$
Bernoulli	1	1	$x \in \{0, 1\}$

DNA Sequence Motifs

Nucleotides: (a)denine, (c)ytosine, (g)uanine, (t)hymine

Poisson Distribution

Count of independent events during some time interval; e.g. number of goals during a soccer match

W

Empirical Distribution

$$p_{\text{emp}}(A) \triangleq \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}(A)$$

$$\delta_x(A) = \begin{cases} 0 & \text{if } x \notin A \\ 1 & \text{if } x \in A \end{cases}$$

$$p(x) = \sum_{i=1}^{N} w_i \delta_{x_i}(x)$$

$$0 \leq w_i \leq 1$$
 and $\sum_{i=1}^N w_i = 1$

Gaussian, Student, and Laplace Distribution

Gaussian

$$\mathcal{N}(x|\mu,\sigma^2) \triangleq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \qquad \Phi(x;\mu,\sigma^2) \triangleq \int_{-\infty}^x \mathcal{N}(z|\mu,\sigma^2) dz \qquad z = (x-\mu)/\sigma$$

• Student's t

$$\mathcal{T}(x|\mu,\sigma^2,\nu) \propto \left[1+\frac{1}{\nu}\left(\frac{x-\mu}{\sigma}\right)^2\right]^{-(\frac{\nu+1}{2})}$$

• Laplace

$$\operatorname{Lap}(x|\mu, b) \triangleq \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

Gaussian, Student, and Laplace Distribution

 $\mathcal{N}(0,1)$, $\mathcal{T}(0,1,1)$ and $\operatorname{Lap}(0,1/\sqrt{2})$

log(X)

Effect of Outliers

with outliers ... Gaussian: location affected Student t and Laplace: more robust

Gamma Distribution

$$\chi^2(x|\nu) \triangleq \operatorname{Ga}(x|\frac{\nu}{2}, \frac{1}{2})$$

W

Beta Distribution

$$(a,b) \triangleq \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Used to model the probability parameter for a Bernoulli trial:

* 'a' and 'b' can be used as weights for successful and unsuccessful outcomes

* larger weights yield a more concentrated distribution

Pareto (Power Law) Distribution

long, heavy tail

Degenerate PDF

• It's a constant [not actually a random variable]

$$\lim_{\sigma^2 \to 0} \mathcal{N}(x|\mu, \sigma^2) = \delta(x - \mu)$$

• Dirac delta function

$$\delta(x) = \begin{cases} \infty & \text{if } x = 0\\ 0 & \text{if } x \neq 0 \end{cases}$$

Covariance

$$\operatorname{cov}\left[X,Y\right] \triangleq \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)\left(Y - \mathbb{E}\left[Y\right]\right)\right] = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

$$\operatorname{cov} [\mathbf{x}] \triangleq \mathbb{E} \left[(\mathbf{x} - \mathbb{E} [\mathbf{x}])(\mathbf{x} - \mathbb{E} [\mathbf{x}])^T \right]$$
$$= \begin{pmatrix} \operatorname{var} [X_1] & \operatorname{cov} [X_1, X_2] & \cdots & \operatorname{cov} [X_1, X_d] \\ \operatorname{cov} [X_2, X_1] & \operatorname{var} [X_2] & \cdots & \operatorname{cov} [X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov} [X_d, X_1] & \operatorname{cov} [X_d, X_2] & \cdots & \operatorname{var} [X_d] \end{pmatrix}$$

Correlation

$$\operatorname{corr}[X,Y] \triangleq \frac{\operatorname{cov}[X,Y]}{\sqrt{\operatorname{var}[X]\operatorname{var}[Y]}}$$

$$\mathbf{R} = \begin{pmatrix} \operatorname{corr} [X_1, X_1] & \operatorname{corr} [X_1, X_2] & \cdots & \operatorname{corr} [X_1, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{corr} [X_d, X_1] & \operatorname{corr} [X_d, X_2] & \cdots & \operatorname{corr} [X_d, X_d] \end{pmatrix}$$

Correlation Examples

Correlation Doesn't Imply Causation!

"Correlation doesn't imply causation, but it does waggle its eyebrows suggestively and gesture furtively while mouthing 'look over there'."

http://xkcd.com/552/

Joint Distributions

5

Multi-variate Gaussian diagonal -2 0 2 -4 -3 -2 -1 0 1 2 3 4 -4 spherical spherical -5 -5 -4 -2 0 2 4 6 $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \triangleq \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]$

Dirichlet Distribution [3 outcomes]

$$\boldsymbol{\alpha} = (2,2,2)$$

Samples from Dirichlet Distribution

5 outcomes; "alpha" assigned to all 5 parameters

Transformations

Transformation: Univariate Change of Variable

• Density function for transformed variable:

$$p_y(y) = p_x(x) \left| \frac{dx}{dy} \right|$$

• Example:

$$Y = X^2$$
 $X \sim U(-1, 1)$ $p_y(y) = \frac{1}{2}y^{-\frac{1}{2}}$

Transformations

Transformation: Multivariate Change of Variables

Transformation of x,y to r, θ area of the patch is r * d θ * dr, where r * d θ is the length of the arc $p_{r,\theta}(r,\theta)drd\theta = p_{x_1,x_2}(r\cos\theta, r\sin\theta)r dr d\theta$

Central Limit Theorem

The sampling distribution of the mean value rapidly converges to a Gaussian distribution

Monte Carlo Approximation

Monte Carlo Integration

Example: Instead integrating the density function, we can generate random samples of the transformed variable ...

 $\frac{1}{S}|\{x_s \le c\}| \to P(X \le c)$

Monte Carlo Approximation

Monte Carlo Approximation of π

$$\begin{split} I &= \int_{-r}^{r} \int_{-r}^{r} \mathbb{I}(x^{2} + y^{2} \leq r^{2}) dx dy \\ I &= (2r)(2r) \int \int \int f(x, y) p(x) p(y) dx dy \\ &= 4r^{2} \int \int \int f(x, y) p(x) p(y) dx dy \\ &\approx 4r^{2} \frac{1}{S} \sum_{s=1}^{S} f(x_{s}, y_{s}) \\ \pi &= I/(r^{2}) \end{split}$$

$$\hat{\sigma}^2 = \frac{1}{S} \sum_{s=1}^{S} (f(x_s) - \hat{\mu})^2 \qquad P\left\{\mu - 1.96\frac{\hat{\sigma}}{\sqrt{S}} \le \hat{\mu} \le \mu + 1.96\frac{\hat{\sigma}}{\sqrt{S}}\right\} \approx 0.95$$

Monte Carlo Approximation for Gaussian(1.5, .25)

Kullback-Leibler (KL) Divergence

 Defined as the average number of bits needed to encode data, caused by using distribution "q" to encode the data rather than distribution "p"

$$\mathbb{KL}\left(p||q\right) = \sum_{k} p_{k} \log p_{k} - \sum_{k} p_{k} \log q_{k} = -\mathbb{H}\left(p\right) + \mathbb{H}\left(p,q\right)$$

• The second term is known as cross entropy: measuring the dissimilarity of the two distributions

W

Mutual Information

- Measures the strength of the relationship between variables
 - Expected value of the ratio of the joint probability to the product of priors

$$\mathbb{I}(X;Y) \triangleq \mathbb{KL}(p(X,Y)||p(X)p(Y)) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

 $\mathbb{I}\left(X;Y\right) \ge 0$

Mutual information can capture relationships missed by Pearson's correlation coefficient

Information Theory

Maximal Information Coefficient (MIC)

Spectral Clustering

Spectral Clustering References

- Section 25.4 of our text
 - PMTK demo:

<u>http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/(25)</u> -Clustering/spectralClusteringDemo.html

- Ng, Jordan, Weiss NIPS 2001 paper
 - <u>http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf</u>
- Scikit-learn documentation
 - <u>http://scikit-</u>

learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#s klearn.cluster.SpectralClustering

W

Spectral Clustering Algorithm

Given a set of points $S = \{s_1, \ldots, s_n\}$ in \mathbb{R}^l that we want to cluster into k subsets:

- 1. Form the affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{ij} = \exp(-||s_i s_j||^2/2\sigma^2)$ if $i \neq j$, and $A_{ii} = 0$.
- 2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A's *i*-th row, and construct the matrix $L = D^{-1/2}AD^{-1/2}$.¹
- 3. Find x_1, x_2, \ldots, x_k , the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix $X = [x_1 x_2 \ldots x_k] \in \mathbb{R}^{n \times k}$ by stacking the eigenvectors in columns.
- 4. Form the matrix Y from X by renormalizing each of X's rows to have unit length (i.e. $Y_{ij} = X_{ij} / (\sum_j X_{ij}^2)^{1/2})$.
- 5. Treating each row of Y as a point in \mathbb{R}^k , cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
- 6. Finally, assign the original point s_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

Compared to Other Methods

- Primary Advantage
 - Can be used to generate clusters with arbitrary shapes
- Primary Disadvantage
 - Cannot generalize to unseen data
- Focus is on spectral representation
 - K-means is often used for clustering the spectral representation; but other clustering methods can be used

Matlab Code for Spectral Representation

```
sigma = 0.1;
num clusters = 2;
S1S2 = -2 * data * data';
SS = sum(data.^{2},2);
A = exp(-(S1S2+repmat(SS,1,length(SS))+repmat(SS',length(SS),1)) / (2*sigma^2));
D = diag(1 . / sqrt(sum(A, 2)));
L = D * A * D;
[X, D] = eigs(L, num_clusters);
Y = X ./ repmat(sqrt(sum(X.^2, 2)), 1, num clusters);
```

1.5

1

0.5

0

-0.5

-1

-1.5 -1.5

X i,2

Spectral Representation for 6 Observations

	>> A						>> X	
0	A =						X =	
	1.0000	0.2132	0.4195	0.0000	0.0000	0.0000	-0.6019	0.0336
	0.2132	1.0000	0.0933	0.0000	0.0000	0.0000		
	0.4195	0.0933	1.0000	0.0000	0.0000	0.0000	-0.5385	0.0300
	0.0000	0.0000	0.0000	1.0000	0.2516	0.3107	-0.5794	0.0323
	0.0000	0.0000	0.0000	0.2516	1.0000	0.9560	0.0557	-0.5080
	0.0000	0.0000	0.0000	0.3107	0.9560	1.0000		
	>> D						0.0662	-0.6038
0 [®]	D =						0.0671	-0.6118
	0.7826	0	0	0	0	0	>> Y	
-1 -0.5 0 0.5 1 1.5	0	0.8748	0	0	0	0	Y =	
X _{i,1}	0	0	0.8130	0	0	0		0 0557
	0	0	0	0.8000	0	0	-0.9985	0.0557
	0	0	0	0	0.6730	0	-0.9985	0.0557
	0	0	0	0	0	0.6642	-0.9985	0.0557
	>> L						0.1090	-0.9940
	L = 0.6125	0.1460	0.2669	0.0000	0.0000	0.0000	0.1090	-0.9940
	0.1460	0.7654	0.0664	0.0000	0.0000	0.0000	0.1090	-0.9940
	0.2669	0.0664	0.6610	0.0000	0.0000	0.0000		
	0.0000	0.0004	0.0000	0.6401	0.1355	0.1651		
	0.0000	0.0000	0.0000	0.1355	0.4530	0.4274		
	0.0000	0.0000	0.0000	0.1651	0.4274	0.4412		
	0.0000	0.0000	0.0000	0.1001	0.12/1	0.4412		