

Logistic Regression

ddebarr@uw.edu

2016-05-26

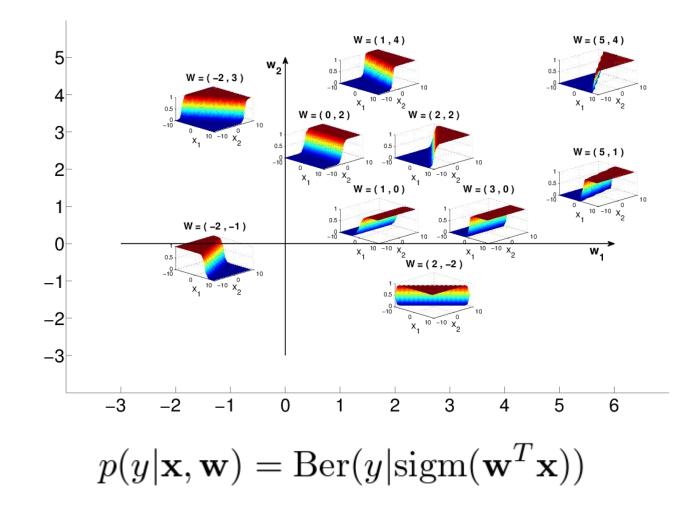
W

Agenda

- Model Specification
- Model Fitting
- Bayesian Logistic Regression
- Online Learning and Stochastic Optimization
- Generative versus Discriminative Classifiers

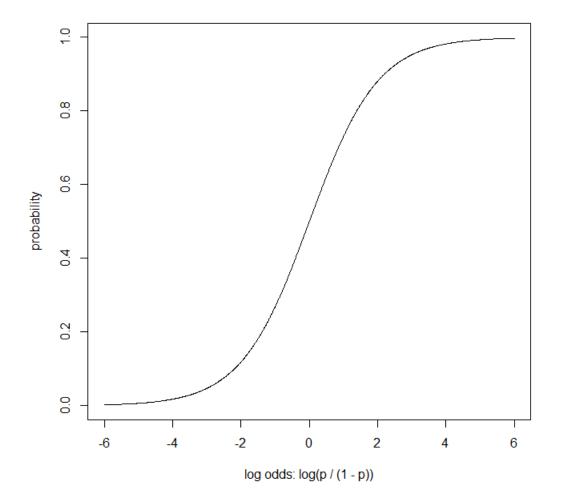
Model Specification

Plots of Sigmoid($w_1 * x_1 + w_2 * x_2$)



Model Specification

The Logistic Function



Maps "log odds" to a probability

Logistic Regression Example: The Data

```
> redRate <- 0.2
> grnRate <- 0.6
> bluRate <- 0.8
> set.seed(2^17-1)
> n <- 100000
> red <- as.integer(runif(n) < redRate)</pre>
> grn <- as.integer(runif(n) < grnRate)</pre>
> blu <- as.integer(runif(n) < bluRate)</pre>
> data <- data.frame(y = c(red, grn, blu),</pre>
+
                       red = c(rep(1, n)),
+
                                rep(0, n),
                                rep(0, n)),
+
                       grn = c(rep(0, n)),
+
                                rep(1, n),
+
+
                                rep(0, n)),
                       blu = c(rep(0, n)),
+
+
                                rep(0, n),
                                rep(1, n)),
+
                       redcor = c(sample(c(rep(1, 0.99 * n)),
+
+
                                             rep(0, 0.01 * n))),
+
                                   rep(0, n),
+
                                   rep(0, n)))
> data <- data[sample(1:nrow(data)),]</pre>
```


Logistic Regression Example: Prediction

```
> model1 <- glm(y ~ red + grn, data = data, family = binomial)
> model1$coefficients
(Intercept) red grn
1.3892971 -2.7906595 -0.9839986
> data[1,]
        y red grn blu redcor
164517 1 0 1 0 0
> predict(model1, data[1,], type="response")
    164517
0.59996
> 1 / (1 + exp(-(1.389297 - 2.790660 * data[1,]$red - 0.983999 * data[2,]$grn)))
[1] 0.5999599
```


Logistic Regression Example: The Model

```
> model1 <- glm(y ~ red + grn, data = data, family = binomial)
> summary(model1)
Call:
glm(formula = y ~ red + grn, family = binomial, data = data)
Deviance Residuals:
   Min
             10 Median 30
                                     Max
-1.7955 -0.6635 0.6672 1.0108 1.8008
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.389297 0.007913 175.57 <2e-16 ***
     -2.790660 0.011211 -248.93 <2e-16 ***
red
    -0.983999 0.010212 -96.36 <2e-16 ***
grn
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 414606 on 299999 degrees of freedom
Residual deviance: 333964 on 299997 degrees of freedom
AIC: 333970
```

Number of Fisher Scoring iterations: 4

This model does not have a problem with collinearity

Logistic Regression Example: The Model

> model2 <- glm(y ~ red + grn + blu, data = data, family = binomial)
> summary(model2)

```
Call:
glm(formula = v ~ red + grn + blu, family = binomial, data = data)
Deviance Residuals:
            1Q Median
                              3Q
                                     Max
   Min
-1.7955 -0.6635 0.6672 1.0108 1.8008
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.389297 0.007913 175.57 <2e-16 ***
         -2.790660 0.011211 -248.93 <2e-16 ***
red
         -0.983999 0.010212 -96.36 <2e-16 ***
grn
blu
                  NA
                            NA
                                   NA
                                            NA
____
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 414606 on 299999 degrees of freedom
Residual deviance: 333964 on 299997 degrees of freedom
AIC: 333970
Number of Fisher Scoring iterations: 4
```

This model does not have a problem with collinearity, because our solver recognized the matrix was rank deficient

Logistic Regression Example: Model 2

> model3 <- glm(y ~ red + grn + redcor, data = data, family = binomial)
> summary(model3)

```
Call:
glm(formula = v ~ red + grn + redcor, family = binomial, data = data)
Deviance Residuals:
   Min
            1Q Median 3Q Max
-1.7955 -0.6642 0.6672 1.0108 1.8951
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.389297 0.007913 175.575 <2e-16 ***
       -3.003543 0.085357 -35.188 <2e-16 ***
red
    -0.983999 0.010212 -96.360 <2e-16 ***
grn
redcor 0.214895 0.085363 2.517 0.0118 *
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 414606 on 299999 degrees of freedom
Residual deviance: 333958 on 299996 degrees of freedom
AIC: 333966
```

Number of Fisher Scoring iterations: 4

This model has a problem with collinearity: interpretation of the coefficients is problematic

MLE for Logistic Regression

$$NLL(\mathbf{w}) = -\sum_{i=1}^{N} \log[\mu_i^{\mathbb{I}(y_i=1)} \times (1-\mu_i)^{\mathbb{I}(y_i=0)}]$$
$$= -\sum_{i=1}^{N} [y_i \log \mu_i + (1-y_i) \log(1-\mu_i)]$$
$$NLL(\mathbf{w}) = \sum_{i=1}^{N} \log(1+\exp(-\tilde{y}_i \mathbf{w}^T \mathbf{x}_i))$$

Unfortunately, there is no closed form solution for the MLE!

Gradient and Hessian of the NLL

$$\mathbf{g} = \frac{d}{d\mathbf{w}} NLL(\mathbf{w}) = \sum_{i} (\mu_{i} - y_{i}) \mathbf{x}_{i} = \mathbf{X}^{T} (\boldsymbol{\mu} - \mathbf{y})$$
$$\mathbf{H} = \frac{d}{d\mathbf{w}} \mathbf{g}(\mathbf{w})^{T} = \sum_{i} (\nabla_{\mathbf{w}} \mu_{i}) \mathbf{x}_{i}^{T} = \sum_{i} \mu_{i} (1 - \mu_{i}) \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$
$$= \mathbf{X}^{T} \mathbf{S} \mathbf{X}$$

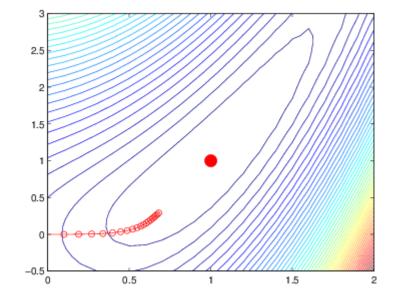
Steepest Descent

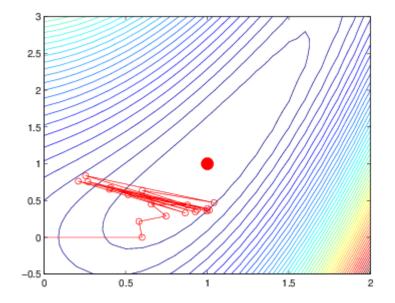
• The negative of the gradient is used to update the parameter vector

 $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \eta_k \mathbf{g}_k$

- Eta is the learning rate, which can be difficult to set
 - Small, constant: takes a long time to converge
 - Large: may not converge at atll

Gradient Descent Example

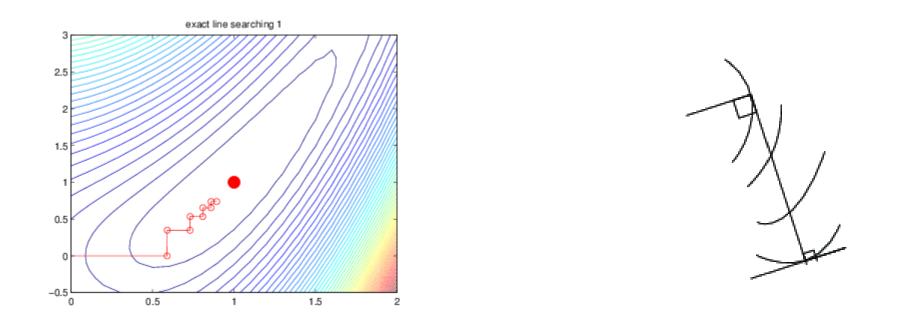




Too small?

Too large!

Steepest Descent Example



Step size driven by "line search": the local gradient is perpendicular to the search direction

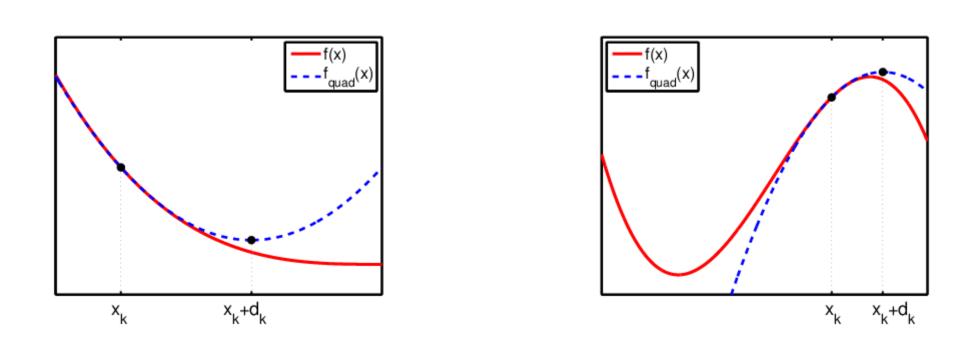
W

Newton's Method

Algorithm 8.1: Newton's method for minimizing a strictly convex function

1 Initialize θ_0 ; 2 for k = 1, 2, ... until convergence do 3 Evaluate $\mathbf{g}_k = \nabla f(\boldsymbol{\theta}_k)$; 4 Evaluate $\mathbf{H}_k = \nabla^2 f(\boldsymbol{\theta}_k)$; 5 Solve $\mathbf{H}_k \mathbf{d}_k = -\mathbf{g}_k$ for \mathbf{d}_k ; 6 Use line search to find stepsize η_k along \mathbf{d}_k ; 7 $\begin{bmatrix} \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta_k \mathbf{d}_k \end{bmatrix}$;

Newton's Method Example



Convex Example

Non-Convex Example

Iteratively Reweighted Least Squares

Algorithm 8.2: Iteratively reweighted least squares (IRLS)

1
$$\mathbf{w} = \mathbf{0}_D$$
;
2 $w_0 = \log(\overline{y}/(1-\overline{y}))$;
3 **repeat**
4 $\eta_i = w_0 + \mathbf{w}^T \mathbf{x}_i$;
5 $\mu_i = \operatorname{sigm}(\eta_i)$;
6 $s_i = \mu_i(1-\mu_i)$;
7 $z_i = \eta_i + \frac{y_i - \mu_i}{s_i}$;
8 $\mathbf{S} = \operatorname{diag}(s_{1:N})$;
9 $\mathbf{w} = (\mathbf{X}^T \mathbf{S} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S} \mathbf{z}$;
10 **until** converged;

We're applying Newton's algorithm to find the MLE

Broyden Fletcher Goldfarb Shanno (BFGS)

- Computing the Hessian matrix explicitly can be expensive
- Rather than computing the Hessian explicitly, we can use an approximation $\mathbf{B}_k pprox \mathbf{H}_k$
 - $\mathbf{B}_0\,=\,\mathbf{I}$

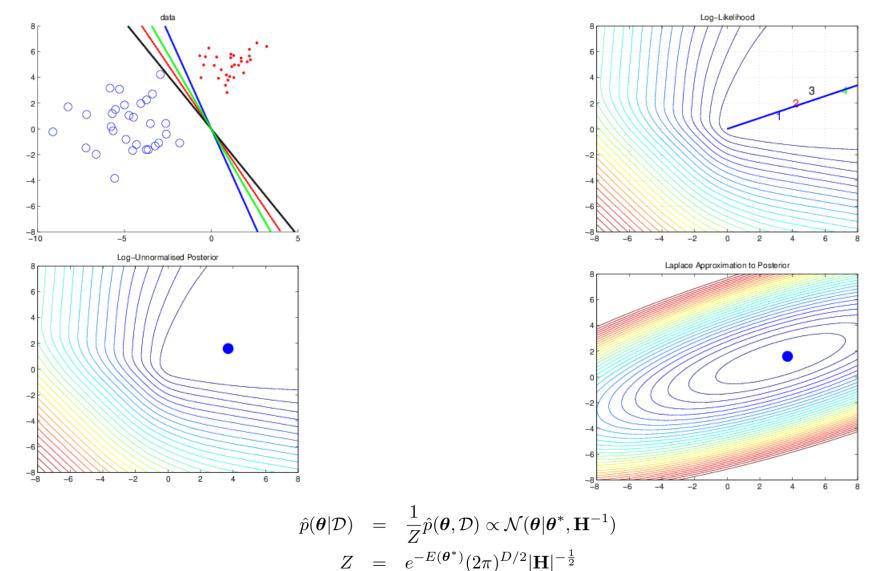
$$\begin{aligned} \mathbf{B}_{k+1} &= \mathbf{B}_k + \frac{\mathbf{y}_k \mathbf{y}_k^T}{\mathbf{y}_k^T \mathbf{s}_k} - \frac{(\mathbf{B}_k \mathbf{s}_k)(\mathbf{B}_k \mathbf{s}_k)^T}{\mathbf{s}_k^T \mathbf{B}_k \mathbf{s}_k} \\ \mathbf{s}_k &= \boldsymbol{\theta}_k - \boldsymbol{\theta}_{k-1} \\ \mathbf{y}_k &= \mathbf{g}_k - \mathbf{g}_{k-1} \end{aligned}$$

We're using a diagonal plus low-rank approximation for the Hessian

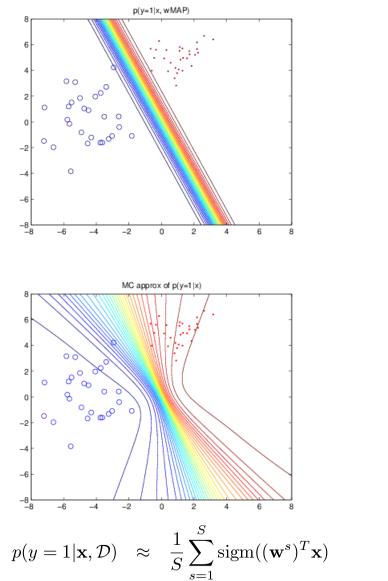
Limited Memory BFGS (L-BFGS)

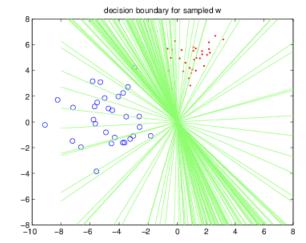
- Storing the Hessian matrix takes $O(D^2)$ space, where D is the number of dimensions
- We can further approximate the Hessian by using only the *m* most recent (s_k , y_k) pairs, reducing the storage requirement to O(mD)

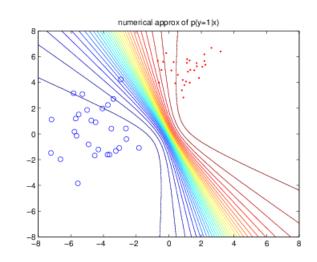
Bayesian Logistic Regression



Posterior Predictive Distribution

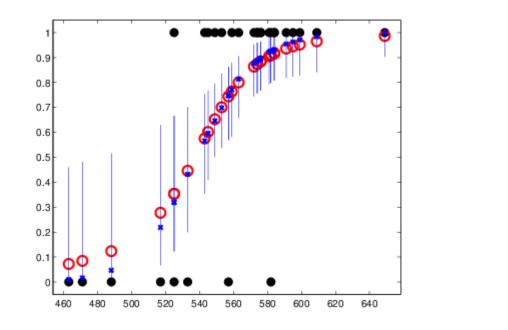


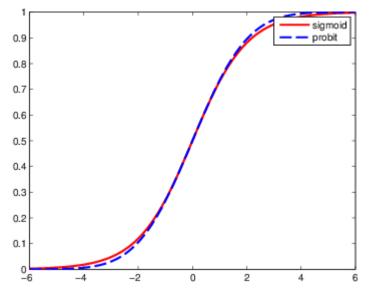




Probit Approximation

Posterior Predictive Density for SAT Data





includes 95% CI

Online Learning and Regret

- Updating the model as we go
 - Example: user is presented an ad, and either clicks or doesn't click

$$\operatorname{regret}_{k} \triangleq \frac{1}{k} \sum_{t=1}^{k} f(\boldsymbol{\theta}_{t}, \mathbf{z}_{t}) - \min_{\boldsymbol{\theta}^{*} \in \Theta} \frac{1}{k} \sum_{t=1}^{k} f(\boldsymbol{\theta}_{*}, \mathbf{z}_{t})$$

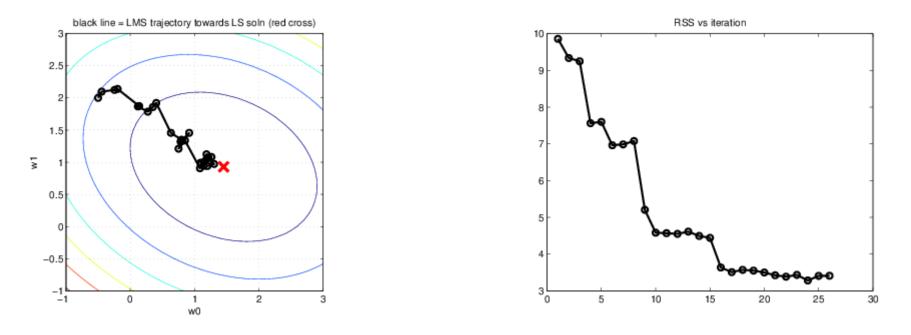
Stochastic Gradient Descent

Algorithm 8.3: Stochastic gradient descent

- 1 Initialize $\boldsymbol{\theta}, \eta$;
- 2 repeat
- Randomly permute data; 3 4 | for i = 1 : N do
- 5 $| \mathbf{g} = \nabla f(\boldsymbol{\theta}, \mathbf{z}_i);$ 6 $| \boldsymbol{\theta} \leftarrow \operatorname{proj}_{\Theta}(\boldsymbol{\theta} \eta \mathbf{g});$

The "adagrad" variant uses a per-parameter step size based on the curvature of the loss function

Least Mean Squares Example



 $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \eta_k (\hat{y}_k - y_k) \mathbf{x}_k$

known as Widrow-Hoff rule or the delta rule

Stochastic Gradient Descent scales really well; used by Apache Spark

W

Perceptron

Algorithm 8.4: Perceptron algorithm

1 Input: linearly separable data set $\mathbf{x}_i \in \mathbb{R}^D$, $y_i \in \{-1, +1\}$ for i = 1 : N; 2 Initialize θ_0 ; 3 $k \leftarrow 0$; 4 repeat $k \leftarrow k+1;$ 5 6 | $i \leftarrow k \mod N$; if $\hat{y}_i \neq y_i$ then 7 $| \boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + y_i \mathbf{x}_i$ 8 else 9 10 no-op

11 **until** converged;

$$\hat{y}_i = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x}_i)$$

Generative v Discriminative Classifiers

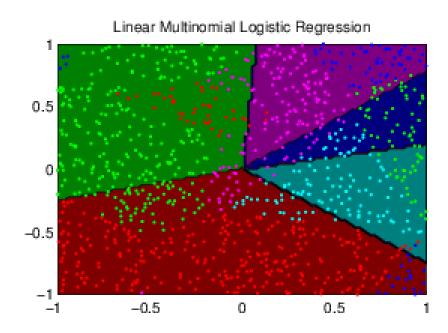
- Easy to fit?
- Fit classes separately?
- Handle missing features easily?
- Can handle unlabeled training data?
- Symmetric in inputs and outputs?
- Can handle feature preprocessing?
- Well-calibrated probabilities?

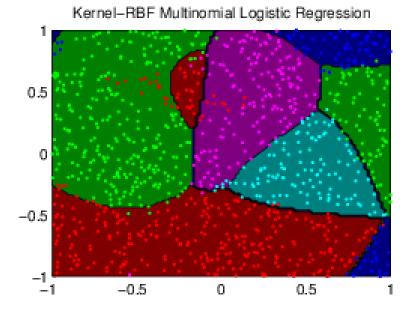
Summary of Models

Model	Classif/regr	Gen/Discr	Param/Non	Section
Discriminant analysis	Classif	Gen	Param	Sec. 4.2.2, 4.2.4
Naive Bayes classifier	Classif	Gen	Param	Sec. 3.5, 3.5.1.2
Tree-augmented Naive Bayes classifier	Classif	Gen	Param	Sec. 10.2.1
Linear regression	Regr	Discrim	Param	Sec. 1.4.5, 7.3, 7.6,
Logistic regression	Classif	Discrim	Param	Sec. 1.4.6, 8.3.4, 8.4.3, 21.8.1.1
Sparse linear/ logistic regression	Both	Discrim	Param	Ch. 13
Mixture of experts	Both	Discrim	Param	Sec. 11.2.4
Multilayer perceptron (MLP)/ Neural network	Both	Discrim	Param	Ch. 16
Conditional random field (CRF)	Classif	Discrim	Param	Sec. 19.6
K nearest neighbor classifier	Classif	Gen	Non	Sec. 1.4.2, 14.7.3
(Infinite) Mixture Discriminant analysis	Classif	Gen	Non	Sec. 14.7.3
Classification and regression trees (CART)	Both	Discrim	Non	Sec. 16.2
Boosted model	Both	Discrim	Non	Sec. 16.4
Sparse kernelized lin/logreg (SKLR)	Both	Discrim	Non	Sec. 14.3.2
Relevance vector machine (RVM)	Both	Discrim	Non	Sec. 14.3.2
Support vector machine (SVM)	Both	Discrim	Non	Sec. 14.5
Gaussian processes (GP)	Both	Discrim	Non	Ch. 15
Smoothing splines	Regr	Discrim	Non	Section 15.4.6

W

Multinomial Logistic Regression

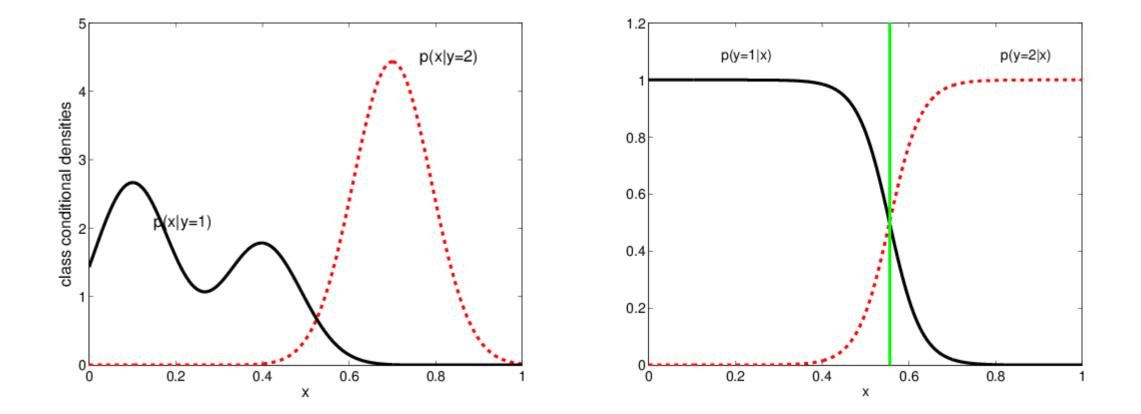




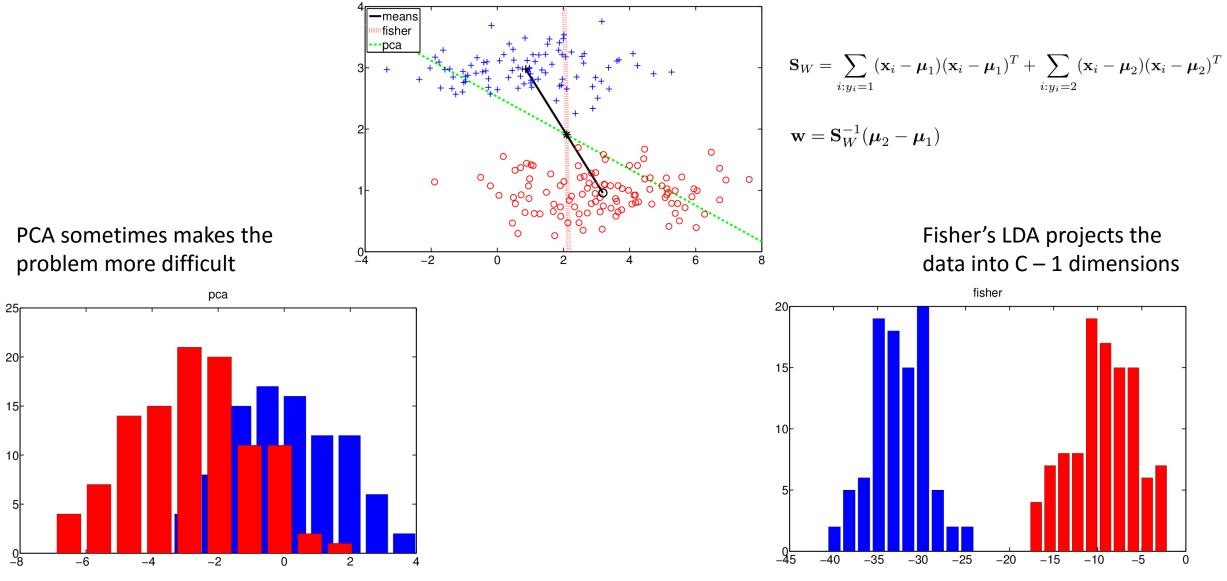
Non-Linear RBF expansion

Linear

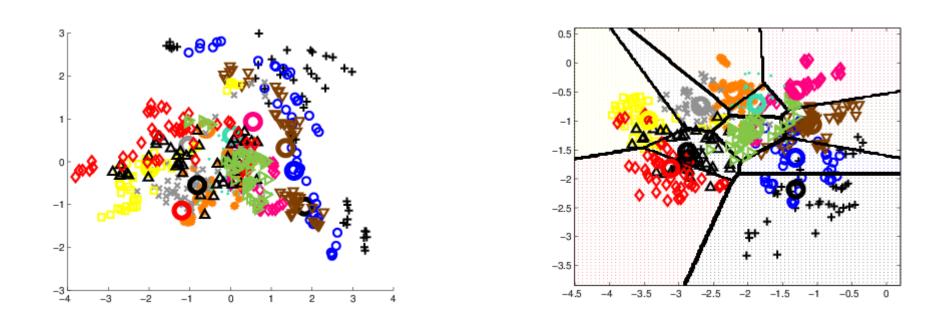
Class Conditional Density v Class Posterior



Fisher's Linear Discriminant Analysis Example



PCA versus FLDA Projection of Vowel Data



Projecting high dimensional data down to C – 1 dimensions can be problematic; however, FLDA certainly seems to produce better structure than PCA for this example

Active Learning

Active Learning

- Active learning is a special case of semi-supervised learning, where we are able to obtain labels for some number of unlabeled test examples
- Popular strategies include ...
 - Uncertainty sampling
 - Query by committee
 - Balancing exploration and exploitation
- ... to be continued on June $2^{nd}\hdots$