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Agenda

• Model Specification

• Maximum Likelihood Estimation [least squares]

• Robust Linear Regression

• Ridge Regression

• Bayesian Linear Regression



Fitted Plane versus Quadratic Form

Model Specification

Both are considered to be linear models

Predicting temperature based on position in a room



Residuals and Error Contours for Weights

Maximum Likelihood Estimation

Contours for weight spaceVisualization of residuals (errors)



Derivation of the MLE

Maximum Likelihood Estimation
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The Negative Log Likelihood
is proportional to the SSE



Graphical Interpretation of Least Squares

Maximum Likelihood Estimation



Convex versus Non-Convex Sets

Maximum Likelihood Estimation

Convex: all points in a line between
member points are also member points

Non-Convex



Convex versus Non-Convex Functions

Maximum Likelihood Estimation

Magic: a convex function has a unique global minimum

Convex function: any chord between two points
of the function lies above the function

Non-Convex



Robust Linear Regression

Robust Linear Regression

Ordinary least squares: Gaussian “l2” loss
Robust regression: Laplacian “l1” loss [solved via linear programming]

Example Regression Problem Graph of Loss Functions



Ridge Regression

Ridge Regression

Higher variance Higher bias

Ridge regression helps avoid overfitting by minimizing

polynomial regression example



5-Fold Cross Validation in Action

Ridge Regression

train has 21 observations
test has 201 observations

Results are similar for negative marginal log likelihood
and cross validation

Recommendation: avoid using the training data to evaluate fit



Geometry of Ridge Regression

Ridge Regression

Minimizing Gaussian loss with a penalty on the sum of squared weights
means we have a preference for smaller weights



Example Learning Curves

Ridge Regression

Noise floor

Structural error

Correct model
has quickest
convergence

Big data
helps reduce
overfitting



Sequential Updates

Bayesian Linear Regression

Before we see data

After 1 observation

After 2 observations

After 20 observations:
we’re converging on the
true model (white cross)



MLE versus Posterior Predictive Confidence

Bayesian Linear Regression

The posterior predictive
reflects greater uncertainty
about predictions as we move
outside the bounds of the
observed data



Uncertainty About Model Parameters

Bayesian Linear Regression

Using the caterpillar data …

If the 95% CI of a coefficient includes zero,
that coefficient is not considered to be significant



5-Fold Cross Validation versus Empirical Bayes

Bayesian Linear Regression

Repeating the cross validation result from earlier Comparing to empirical Bayes where we are
manipulating the precision of the prior

Recommendation: avoid using the training data to evaluate fit



Semi-Supervised Learning



Agenda

• Definitions

• Semi-Supervised Learning Assumptions

• Self-Training

• Co-Training

• Label Propagation

• Induction versus Transduction



Definitions

• Supervised learning: labeled data is used to construct 
a model

•Unsupervised learning: unlabeled data is used to 
construct a model

• Semi-Supervised learning: both labeled and unlabeled 
data are used to construct a model
• It can be cheap to collect unlabeled data, but obtaining 

labels can be both expensive and time-consuming



Semi-Supervised Learning Assumptions

For classification …

• Smoothness: a decision boundary runs through a low 
density area

•Clustering: observations that belong to the same 
cluster will have the same label

•Manifold: observations can be effectively projected to 
a much lower dimension



Self-Training

• Use the labeled data to construct a model

• Generate predictions for the unlabeled data

• Use high-confidence predictions as labels, add those observations to 
the training data, and construct a new model

• Be careful! 

Recommendation: use repeated cross validation for evaluation

A naïve approach may do the wrong thing



Co-Training

• Use the labeled data to construct a pair of models
• Construct model1 using featureSet1 (e.g. images)

• Construct model2 using featureSet2 (e.g. text descriptions)

• Generate predictions for the unlabeled data

• Use high-confidence predictions for a model as labels, add those 
observations to the training data for the other model, and construct 
new models
• Add high-confidence predictions for model1 to the training set for model2

• Add high-confidence predictions for model2 to the training set for model1



Label Propagation

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219
The 𝑺 similarity matrix is the same matrix we used for spectral decomposition for spectral clustering.
This algorithm incrementally propagates labels to “neighbors.”

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219


Induction versus Transduction

Induction produces a model that can be used to make predictions for unseen data

Model

Observations Predictions

Induction Deduction

Transduction


