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Agenda

* Model Specification

* Maximum Likelihood Estimation [least squares]
* Robust Linear Regression

* Ridge Regression

* Bayesian Linear Regression




Model Specification

Fitted Plane versus Quadratic Form

Predicting temperature based on position in a room
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f(x) f(x) = wo + w1zl + wars + w3z + waxs

Both are considered to be linear models



Maximum Likelihood Estimation

Residuals and Error Contours for Weights
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Visualization of residuals (errors) Contours for weight space



Maximum Likelihood Estimation

Derivation of the MLE

The Negative Log Likelihood e=y—Xw

is proportional to the SSE SSE — (y B XW)T (y B XW)
SSE = (yT —w' X' )(y — Xw)
SSE=y'y—y" Xw-w'X"y+w' X" Xw
SSE =y'y—2y" Xw +w' X" Xw
..S0...

OSSE _ 0-2X"y +2X" Xw
oW

... setting the gradient equal to 0 and solving for w ...
2X'y +2X" Xw =0

2X"Xw =2X"y

X'Xw = X"y

1
Ref: Equation 7.16 W= (XTX) X'y



Maximum Likelihood Estimation

Graphical Interpretation of Least Squares
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Maximum Likelihood Estimation

w

Convex versus Non-Convex Sets

Convex: all points in a line between Non-Convex
member points are also member points



Maximum Likelihood Estimation

Convex versus Non-Convex Functions

X y A B

Convex function: any chord between two points Non-Convex
of the function lies above the function

Magic: a convex function has a unique global minimum



Robust Linear Regression

Robust Linear Regression

Example Regression Problem Graph of Loss Functions
Linaar data with noise and autliars
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Ordinary least squares: Gaussian “12” loss
Robust regression: Laplacian “I1” loss [solved via linear programming]



Ridge Regression

Ridge Regression
ﬁr?idge — (AID - XTX)_ley

polynomial regression example

In lambda —-20.135 In lamibda -B.571
20r 20r
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Higher variance Higher bias
| N
Ridge regression helps avoid overfitting by minimizing N Z(’yi — (wo + w''x;))? + Al[w||3
=1




Ridge Regression

5-Fold Cross Validation in Action
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train has 21 observations Results are similar for negative marginal log likelihood
test has 201 observations and cross validation

Recommendation: avoid using the training data to evaluate fit



Ridge Regression

Geometry of Ridge Regression

* ML Estimate

+ MAP Estimate

A

prior mean

Minimizing Gaussian loss with a penalty on the sum of squared weights
means we have a preference for smaller weights



Ridge Regression

Example Learning Curves

Structural error
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Correct model
has quickest
convergence

Big data
helps reduce
overfitting



Bayesian Linear Regression

Sequential Updates

Ikalihood priar/pastariar dala spaca

S Before we see data

After 1 observation
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Bayesian Linear Regression

MLE versus Posterior Predictive Confidence

plugin approximation (MLE)
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The posterior predictive
reflects greater uncertainty
about predictions as we move
outside the bounds of the
observed data



Bayesian Linear Regression
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Uncertainty About Model Parameters

Using the caterpillar data ...

C = (XTX)"!
w;  E[w;|D] +/var|w;|D] 95% CI sig
N o ) w0  10.998 3.06027 [4.652, 17.345]  *
sT = (Y = XWinie)” (y — XWinie) wl  -0.004  0.00156 -0.008, -0.001] *
w2 -0.054 0.02190 [-0.099, -0.008] *
oo w3 0.068 0.09947 -0.138, 0.274]
p(wj|D) _ T(wjhf}jj NJJSD?N - D) w4 -1.294 0.56381 [-2.463, -0.124] *
- w5 0.232 0.10438 [0.015, 0.448]  *
w6  -0.357 1.56646 -3.605, 2.892]
e w7  -0.237 1.00601 [-2.324, 1.849]
!chgtecng/lficciler?t ?scnooi clsges?;;:(:dutoe i):esri(;'nificant wil 0.18] 0.25672 [-0.310, 0.672]
w9  -1.285 0.86485 -3.079, 0.508]

wl0 -0.433 0.73487 [-1.957, 1.091]



Bayesian Linear Regression

5-Fold Cross Validation versus Empirical Baye
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Comparing to empirical Bayes where we are
manipulating the precision of the prior

Repeating the cross validation result from earlier

Recommendation: avoid using the training data to evaluate fit
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Semi-Supervised Learning
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* Definitions

* Semi-Supervised Learning Assumptions
* Self-Training

* Co-Training

* Label Propagation

* Induction versus Transduction
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* Supervised learning: labeled data is used to construct
a model

* Unsupervised learning: unlabeled data is used to
construct a model

* Semi-Supervised learning: both labeled and unlabeled
data are used to construct a model

* It can be cheap to collect unlabeled data, but obtaining
labels can be both expensive and time-consuming

Definitions
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Semi-Supervised Learning Assumptions

For classification ...

* Smoothness: a decision boundary runs through a low
density area

* Clustering: observations that belong to the same
cluster will have the same label

* Manifold: observations can be effectively projected to
a much lower dimension
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Self-Training

* Use the labeled data to construct a model
* Generate predictions for the unlabeled data

* Use high-confidence predictions as labels, add those observations to
the training data, and construct a new model

* Be careful!

A naive approach may do the wrong thing

Recommendation: use repeated cross validation for evaluation
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Co-Training

e Use the labeled data to construct a pair of models
e Construct modell using featureSet1 (e.g. images)
e Construct model2 using featureSet2 (e.g. text descriptions)

* Generate predictions for the unlabeled data

* Use high-confidence predictions for a model as labels, add those
observations to the training data for the other model, and construct
new models

* Add high-confidence predictions for modell to the training set for model2
* Add high-confidence predictions for model2 to the training set for modell
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1. Form the affinity matrix W defined by W;; = exp(—||z; — z,]|*/20?) if i # j
and WE? = (.

2. Construct the matrix S = D~/2W D~1/2 in which D is a diagonal matrix with
its (7, 7)-element equal to the sum of the i-th row of .

3. Iterate F(t+1) = aSF(t) + (1 — «)Y until convergence, where « is a parameter
in (0,1).

4. Let F* denote the limit of the sequence {F'(t)}. Label each point z; as a label
yi = arg max; <. I,

Label Propagation

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

The S similarity matrix is the same matrix we used for spectral decomposition for spectral clustering.
This algorithm incrementally propagates labels to “neighbors.”



http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219
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Induction produces a model that can be used to make predictions for unseen data

Induction versus Transduction

Induction Deduction

Observations Predictions

Transduction



