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Agenda

* Bayesian Concept Learning

* Beta-Binomial Model

e Dirichlet-Multinomial Model
* Naive Bayes Classifiers

p(y = c|x,0) x p(x|y = c,0)p(y = c|0)




Bayesian Concept Learning

Numbers Game

Given positive

class examples
predict membership
for remaining
numbers

[8 people]
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Bayesian Concept Learning

Likelihood

p(Dlh) = Lizel(h)r N {ﬁr

* Example:
* After 1 example ...

p(D|huwo) = 1/6 v p(Dlheven) = 1/50
* After 4 examples ...
(1/6)* = 7.7 x 10~ y (1/50)% = 1.6 x 107

* Occam’s razor: simpler is better [likelihood ratio is almost 5000:1]



Bayesian Concept Learning

Estimation: MAP v MLE

w

e Posterior = Likelihood * Prior / Evidence

 Maximum A Priori (MAP)

WMAP — argmax p(D|h)p(h) = argmax [log p(D|h) + log p(h)]
h h

 Maximum Likelihood Estimate (MLE)

e & argmax p(D|h) = argmax log p(D|h)
h h



Bayesian Concept Learning
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Bayesian Concept Learning

Posterior

Posterior probabilities for
32 different concepts after
observing 4 values
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Bayesian Concept Learning

p(Z € C|D) =) ply

h

After 1 example ...

Bayesian
Model
Averaging
[BMA]

(weighted average)

= 1|7
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Bayesian Concept Learning

More Complex Prior (to mimic humans)

Examples
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Mixture: p(h) = Woprules(h) +(1 - WU)pinterval(h)



Beta-Binomial Distribution

Beta-Binomial Distribution

e Likelihood

Same form whether we observe the counts or a sequence of trials

p(D[6) = 671 (1 — )™
* Prior

p(0) o< 671 (1 —6)

* Posterior
p(9|D) X p(D|t9)p(t9) — M1 (1 — Q)NDQ’“ (1 — {9)’?’2 — gN1tm (1 _ Q)Nﬂ+":’2

Conjugate Prior: prior and posterior have the same form



Beta-Binomial Distribution

Effect of the Prior

— prior Be(2.0, 2.0) f"‘, =~ prior Be(5.0, 2.0)
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Hyperparameters also known as (aka) pseudo counts: the equivalent sample size of the prior



Beta-Binomial Distribution

w

Overfitting and the Black Swan Problem
* We'’ve never seen a black swan, so it’s not possible
MLE is # = 0/3 = 0

* Laplace’s rule of succession [aka add-one smoothing]

N +1
~ N; + Ny + 2

p(z = 1|D)



Beta-Binomial Distribution

Use the Force [Prior]

After observing 3 heads out of 20 coin flips ...

pastanar pradiclive plugin pradictiva
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Posterior predictive distribution Simpler plug-in approximation:
based on prior of Beta(2, 2): exhibiting a bit more certainty
heavier tail



Dirichlet-Multinomial Distribution

Dirichlet-Multinomial Distribution

K
* Likelihood p(DIo) = ]]én"
k=1
1 K
* Prior Dir(fla) = Bla) 1162 1(x € Sk)
k=1
e Posterior p(6|D) o p(D|O)p(O)
K K
x H Qﬁfkggk—l _ H ng‘l‘Nk_l




Dirichlet-Multinomial Distribution

Bag of Words Representation

Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb, its fleece as white as snow

mary lamb little big fleece white black snow rain unk

1 2 3 4 5 6 7 8 9 10

1103 2 3232

1 10 3 2 10 56 8

Token | 1 2 3 4 5 6 7 8 9 10

Word | mary lamb little big fleece white black snow rain unk

Count | 2 8! 1 0 1 1 0 1 0 3 Warning:
consistency issue:
count=3 v count=4

Oﬂj‘i‘Nj . 1+Nj

p(X = j|D) = E[9,|D] = for “unk”

p(X = j|D) = (3/27,5/27,5/27,1/27,2/27,2/27,1/27,2/27,1/27,5/27)



Naive Bayes Classifiers

Naive Bayes Classifier (NBC)

w

* Features assumed to be conditionally independent given the class
label

D

p(x|ly =¢,0) = H p(z;ly =¢,0;.) Generative model
j=1

* Multivariate Bernoulli Naive Bayes

D
Hj:l Ber(z;|u;c)



Naive Bayes Classifiers

w

Naive Bayes Parameter Estimation

Algorithm 3.1: Fitting a naive Bayes classifier to binary features

1 N. =0, N;. =0;

for:.=1: N do
c = y; Il Class label of 7'th example;
N.:=N_+1;

for y =1:D do
if z;; = 1 then

L NjC .= NJC—Fl

1 & @ &= W e

A N

]




Naive Bayes Classifiers

Generative Model Examples
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Same term spikes for both classes: not so useful for classification purposes



Naive Bayes Classifiers

Log-Sum-Exp Trick

* Computing the product of a bunch of conditionally independent
probabilities can result in numerical underflow [everything looks like
zero]; so we compute the sum of log values instead

* If we're just predicting the class, we only need to compute the
numerator; but if we need to estimate the probability, we’ll need to
compute the denominator as well -

ply = cJp(xly = c) b o {Z }
c'=1

— clx) = lo = c|x
Ply =) = S = o [0)p(xly = &) Bp =)

>

b

+ B where B = max, b..

logzebc — log {(Z ech)EB} — {log(z ebc—B)

C

log p(x|y = ¢) +logp(y = ¢)



Naive Bayes Classifiers

w

Algorithm 3.2: Predicting with a naive bayes classifier for binary features

1forz=1: N do

Naive Bayes Prediction

2 forc=1:C do

3 L;. = logm,;

4 for ) =1:D do

5 it z;; = 1 then L,. := L,. + log éjc;
6 - else L;c:= Lic + log(1 — éjc);

7 pic = exp(L;. — logsumexp(L; .));

8 Y; = argmax, Pic;




Naive Bayes Classifiers

w

Feature Selection: Filter Method

class 1 = x windows versus class 2 = ms windows

class1  prob | class 2 prob || highest MI  MI

subject 0.998 | subject 0998 || windows  0.215
this 0.628 | windows 0.639 || microsoft 0.095
with  0.535 this 0.540 dos 0.092
but 0.471 with 0.538 motif 0.078
you 0.431 but 0.518 window  0.067

(450 + 1) / ((450 + 1) + (0 + 1)) = 451 / 452 = 0.998



Naive Bayes Classifiers

Mutual Information Example

class
X windows ms windows

microsoft present 6 107 113
absent 444 343 787
450 450
Z)ijagy)

I(X,Y) =) > plzjy)log p(z;)p(y)

( 7 / 904) * log2( ( 7 / 904) / ((114 / 902)
(108 / 904) * log2( (108 / 904) / ((114 / 902)
(445 / 904) * log2( (445 / 904) / ((788 / 902)
(344 / 904) * log2( (344 / 904) / ((788 / 902)
= 0.095

(451 / 902)) ) + ...
(451 / 902)) ) + ...
(451 / 902)) ) + ...
(451 / 902)) )

* *F * *

Note: ((6+1)/((6+ 1)+ (444 +1))) * ((450 + 1) / ((450 + 1) + (450 + 1))) = (7 / 904)
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Recommendation Systems



Approaches

* Collaborative Filtering

* Using a ratings matrix to impute missing ratings and make recommendations
» Ratings may be either explicit (e.g. 5 stars) or implicit (e.g. purchase)

* Popular method: Alternating Least Squares (ALS)

e Cold start problem: new users and new items won’t have ratings

e Content Filtering

* Using features of users (e.g. age, gender, location) and items (e.g. release
date, genre, leading actress for a movie) to make recommendations

* Supervised learning methods apply

* Example: ICDM 2013 Competition to Personalize Expedia Hotel Search
Results: gradient boosting for the Normalized Discounted Cumulative Gain
(NDCG) loss function

* |f ratings are available, a collaborative filtering prediction can be used as a
feature [stacking: treating the output of one model as an input for another]




w

Collaborative Filtering: Nearest Neighbor

* User-based model:
Assumes similar users will have similar ratings for the
same item

*ltem-based model:

Assumes similar items will have similar ratings from
the same user



Nearest Neighbor Rating Example

e users are indexed by ‘u’ and ‘v’
* ‘s’ measures similarity between users
* ‘r’ represents a rating for item ‘I’

%k
- > o,

r,:r, _ ic{RatedByBoth}

2 2
> o, > o,

ic{ RatedByBoth} ie{ RatedByBoth|

uy

. z Su,v
P = Z 5

ve{N earestNeig}zborSer[u]} A) u,v

ve{NearestNeighborSer[u]}

We can replace 7, ; with 7 ; — 1, (for each user) to adjust for differences in mean rating between users



Alternating Least Squares Matrix Factorizatio

UserLatentFactorMatrix * ItemLatentFactorMatrix = RatingMatrix
Im users, f factors] * [ ffactors, nitems ]

(g, (1, Ky hs K
U1 Uy, Hhi hy hHi Iy
Us; U, 9 hy L, Ly Iy _ Bi By Bz By
Uy Uyp Ly Ly hLi by ag Tap Nz Tag
Us, Us, i1 sy Ts3 Iy

\He1  Usp ) \Je1 Too Yoz Tea )
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2. Repeat until convergence (“no” change) or max iterations reached:

a) Fix the items matrix, and solve for regression coefficients for each row of
the users matrix [a model for each user]

b) Fix the users matrix, and solve for regression coefficients for each column
of the items matrix [a model for each item]

Alternating Least Squares Algorithm

1. Initialize the items matrix with random entries

The regression coefficients form latent (unobserved) factors for users
and items



References

“Matrix Factorization Techniques for Recommender Systems”
[from part of the winning team for the $1 million NetFlix prize]
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Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Section 27.6.2 of our text book addresses “Probabilistic Matrix Factorization for Collaborative Filtering”
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* Apache Spark is a data processing platform, based on the concept of
the Resilient Distributed Dataset (RDD)

* Unlike Hadoop, the RDD persists data to memory across iterations

* Python API

* http://spark.apache.org/docs/latest/api/python/index.html

 We'll be using the ALS class of the recommendation module within the
pyspark.mllib package: pyspark.mllib.recommendation.ALS

Apache Spark



http://spark.apache.org/docs/latest/api/python/index.html

Strong versus Weak Scalability

* Strong scalability

* Given 10 times as many computers, we should ideally be able to generate a

model using the same data in 1/10t" as much time [compared to using 1
computer: time shrinks]

* Example: random forests

* Weak scalability

* Given 10 times as many computers, we should ideally be able to generate a

model using 10 times as much data in the same amount of time [compared to
using 1 computer: data grows (big data)]

* Example: gradient descent



