

Bayesian Statistics

ddebarr@uw.edu

2016-05-05

Happy Cinco de Mayo! Celebrating victory at the Battle of Puebla and Mexican Heritage!

Agenda

- Summarizing Posterior Distributions
- Bayesian Model Selection
- Priors
- Hierarchical Bayes
- Empirical Bayes
- Bayesian Decision Theory

Summarizing Posterior Distributions

- Point Estimates
 - Mode
 - Mean
 - Median
- Interval Estimates
 - Central Interval
 - Highest Posterior Density Region

Mean Versus Mode

Summarizing Posterior Distributions

Transformation of a Mode

MAP estimation is not invariant to reparameterization; e.g. y = 1 / (1 + exp(-x + 5))

Central Interval versus Highest Posterior Density Region

Summarizing Posterior Distributions

Central Interval versus Highest Posterior Density Region For a MultiModal Distribution

Comparing Two Proportions

Bayesian Model Selection

Bayesian Occam's Razor

W

Model Selection Example: n = 5

Model Selection Example: n = 30

10

12

8

6

-20 L -2

0

2

Marginal Likelihood for Beta-Binomial Model

$$p(\mathcal{D}) = \binom{N}{N_1} \frac{B(a+N_1,b+N_0)}{B(a,b)}$$

We're able to simply add exponents for the probability of success for the prior and likelihood. Ditto for the probability of failure for the prior and likelihood.

BIC Approximation to Log Marginal Likelihood

BIC: Bayesian Information Criterion

BIC
$$\triangleq \log p(\mathcal{D}|\hat{\theta}) - \frac{\operatorname{dof}(\hat{\theta})}{2} \log N \approx \log p(\mathcal{D})$$

For linear regression ...

$$\log p(\mathcal{D}|\hat{\boldsymbol{\theta}}) = -\frac{N}{2}\log(2\pi\hat{\sigma}^2) - \frac{N}{2}$$

$$\text{BIC} = -\frac{N}{2}\log(\hat{\sigma}^2) - \frac{D}{2}\log(N)$$

Bayes Factor

$$BF_{1,0} \triangleq \frac{p(\mathcal{D}|M_1)}{p(\mathcal{D}|M_0)} = \frac{p(M_1|\mathcal{D})}{p(M_0|\mathcal{D})} / \frac{p(M_1)}{p(M_0)}$$

Bayes factor BF(1,0)Interpretation $\frac{BF < \frac{1}{100}}{BF < \frac{1}{10}}$ Decisive evidence for M_0 Strong evidence for M_0 $\frac{1}{10} < BF < \frac{1}{3} \\ \frac{1}{3} < BF < 1$ Moderate evidence for M_0 Weak evidence for M_0 1 < BF < 3Weak evidence for M_1 3 < BF < 10Moderate evidence for M_1 BF > 10Strong evidence for M_1 BF > 100Decisive evidence for M_1

Marginal Likelihood for 5 Coin Tosses

Jeffreys Prior for Bernoulli and Multinoulli

• Bernoulli

$$p(\theta) \propto \theta^{-\frac{1}{2}} (1-\theta)^{-\frac{1}{2}} = \frac{1}{\sqrt{\theta(1-\theta)}} \propto \operatorname{Beta}(\frac{1}{2}, \frac{1}{2})$$

• Multinoulli

$$p(\boldsymbol{\theta}) \propto \operatorname{Dir}(\frac{1}{2}, \dots, \frac{1}{2})$$

Mixture of Two Beta Distributions

 $p(\theta) = 0.5 \text{ Beta}(\theta|20, 20) + 0.5 \text{ Beta}(\theta|30, 10)$

Priors

Modeling Cancer Rates

Beta-Binomial Example

hierarchical: we're using another model to "shrink" the posterior rates toward the pooled MLE

Modeling Batting Averages

empirical: we're using data to estimate priors

Loss Functions

Absolute Loss

 $L(y,a) = |y-a|^q$

Supervised Learning

$$L(\boldsymbol{\theta}, \delta) \triangleq \mathbb{E}_{(\mathbf{x}, y) \sim p(\mathbf{x}, y | \boldsymbol{\theta})} \left[\ell(y, \delta(\mathbf{x})) = \sum_{\mathbf{x}} \sum_{y} L(y, \delta(\mathbf{x})) p(\mathbf{x}, y | \boldsymbol{\theta}) \right]$$

Loss matrix with unequal weights ...

$$\begin{array}{c|ccc} & \hat{y} = 1 & \hat{y} = 0 \\ \hline y = 1 & 0 & L_{FN} \\ y = 0 & L_{FP} & 0 \\ \end{array}$$

Confusion Matrix

Rates Derived from Confusion Matrix

• Rates normalized by Actual counts

	y = 1	y = 0
$\hat{y} = 1$	TP/N_+ =TPR=sensitivity=recall	FP/N_{-} =FPR=type I
$\hat{y} = 0$	FN/N_+ =FNR=miss rate=type II	TN/N_{-} =TNR=specifity

• Rates normalized by Predicted counts

	y = 1	y = 0
$\hat{y} = 1$	TP/\hat{N}_+ =precision=PPV	$FP/\hat{N}_{+}=FDP$
$\hat{y} = 0$	FN/\hat{N}_{-}	$TN/\hat{N}_{-}=NPV$

 F_1 Score

• Harmonic mean of Precision (P) and Recall (R)

$$F_1 \triangleq \frac{2}{1/P + 1/R} = \frac{2PR}{R+P}$$

$$F_1 = \frac{2\sum_{i=1}^N y_i \hat{y}_i}{\sum_{i=1}^N y_i + \sum_{i=1}^N \hat{y}_i}$$

Micro versus Macro Averaging

- Macro-average: unweighted
- Micro-average: weighted

Class 1Class 2Pooled
$$y = 1$$
 $y = 0$ $y = 1$ $y = 0$ $y = 1$ $y = 0$ $\hat{y} = 1$ 1010 $\hat{y} = 1$ 9010 $\hat{y} = 1$ 10020 $\hat{y} = 0$ 10970 $\hat{y} = 0$ 10890 $\hat{y} = 0$ 201860

Bayesian Decision Theory

Receiver Operating Characteristic (ROC) Curve versus Precision Recall (PR) Curve

