

# Unsupervised Learning

ddebarr@uw.edu

#### 2017-03-09

Interviewer: "I heard you were extremely quick at math." Me: "Yes, as a matter of fact I am." Interviewer: "What's 14 x 27?" Me: "49" Interviewer: "That's not even close." Me: "Yeah, but it was fast." /u/RandomHuman1578

### Course Outline

- 1. Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Resampling Methods
- 5. Linear Model Selection and Regularization

- 6. Moving Beyond Linearity
- 7. Tree-Based Methods
- 8. Support Vector Machines
- 9. Unsupervised Learning

10.Neural Networks and Genetic Algorithms

# 

# Agenda

| 10 Unsupervised Learning                                                                                         | <b>373</b> |
|------------------------------------------------------------------------------------------------------------------|------------|
| 10.1 The Challenge of Unsupervised Learning                                                                      | 373        |
| 10.2 Principal Components Analysis                                                                               | 374        |
| 10.2.1 What Are Principal Components?                                                                            | 375        |
| 10.2.2 Another Interpretation of Principal Components                                                            | 379        |
| 10.2.3 More on PCA $\ldots$     | 380        |
| 10.2.4 Other Uses for Principal Components                                                                       | 385        |
| 10.3 Clustering Methods                                                                                          | 385        |
| 10.3.1 K-Means Clustering $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                              | 386        |
| 10.3.2 Hierarchical Clustering                                                                                   | 390        |
| 10.3.3 Practical Issues in Clustering                                                                            | 399        |
| 10.4 Lab 1: Principal Components Analysis                                                                        | 401        |
| 10.5 Lab 2: Clustering $\ldots$ | 404        |
| 10.5.1 K-Means Clustering $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                     | 404        |
| 10.5.2 Hierarchical Clustering                                                                                   | 406        |
| 10.6 Lab 3: NCI60 Data Example                                                                                   | 407        |
| 10.6.1 PCA on the NCI60 Data                                                                                     | 408        |
| 10.6.2 Clustering the Observations of the NCI60 Data                                                             | 410        |
| 10.7 Exercises                                                                                                   | 413        |

In Practice ....

We're probably using these methods for visualization (e.g. exploratory analysis) or to support supervised learning

- For example, earlier we used principal component analysis for regression
- We can use also use cluster membership information as predictors for supervised learning

# First Principal Component

Loadings

$$\phi_1 = (\phi_{11} \ \phi_{21} \ \dots \ \phi_{p1})^T$$
$$\sum_{j=1}^p \phi_{j1}^2 = 1$$

• Scores

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \ldots + \phi_{p1}X_p$$

Principal Component Analysis

## First Principal Component Optimization Problem

$$\underset{\phi_{11},\ldots,\phi_{p1}}{\text{maximize}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left( \sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^2 \right\} \text{ subject to } \sum_{j=1}^{p} \phi_{j1}^2 = 1$$





Principal Component Analysis

#### **USArrests** Data

|          | PC1       | PC2        |
|----------|-----------|------------|
| Murder   | 0.5358995 | -0.4181809 |
| Assault  | 0.5831836 | -0.1879856 |
| UrbanPop | 0.2781909 | 0.8728062  |
| Rape     | 0.5434321 | 0.1673186  |





**First Principal Component** 

Principal Component Analysis

# Minimizing the Sum of Squared Distances [Simulated Data]





#### Reconstruction

# Multiplying the scores by the loadings to approximate the original data



#### USArrests: Scaled Versus Unscaled Solutions



First Principal Component

**First Principal Component** 

Principal Component Analysis

## Scaling Variables

Variables with larger variance can drive the output

> apply(USArrests, 2, mean)
Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
> apply(USArrests, 2, var)
Murder Assault UrbanPop Rape
18.97047 6945.16571 209.51878 87.72916



# Proportion of Variance Explained (PVE)

• Total Variance

$$\sum_{j=1}^{p} \operatorname{Var}(X_j) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} x_{ij}^2$$

• Variance Explained by the m<sup>th</sup> Principal Component

$$\frac{1}{n}\sum_{i=1}^{n} z_{im}^2 = \frac{1}{n}\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij}\right)$$

• Proportion of Variance Explained

$$\frac{\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij}\right)^{2}}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^{2}}$$

Principal Component Analysis



#### Scree and Cumulative PVE Plots



Principal Component

**Principal Component** 



# Crisp Clustering [Disjoint Clusters]

- Let  $C_1, \ldots, C_K$  denote sets containing the indices of the observations in each cluster.
- 1.  $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}$ . In other words, each observation belongs to at least one of the K clusters.
- 2.  $C_k \cap C_{k'} = \emptyset$  for all  $k \neq k'$ . In other words, the clusters are non-overlapping: no observation belongs to more than one cluster.
- For instance, if the *i*th observation is in the *k*th cluster, then  $i \in C_k$ .



### Example Clusterings for Simulated Data



#### **Objective Function**

#### Minimize within class variation ...



# **Alternative Within Cluster Variation Expression** [first expression equals last expression] $\frac{1}{|C_{k}|} \sum_{i,j' \in C_{k}} \sum_{j=1}^{p} \left( x_{ij} - x_{i'j} \right)^{2} = \frac{1}{|C_{k}|} \sum_{j=1}^{p} \sum_{i,j' \in C_{k}} \left( x_{ij} - x_{i'j} \right)^{2} = \frac{1}{|C_{k}|} \sum_{j=1}^{p} \sum_{i,j' \in C_{k}} \left( x_{ij}^{2} - 2x_{ij}^{2} x_{i'j} + x_{i'j}^{2} \right)$ $=\frac{1}{|C_k|}\sum_{i=1}^{p}\left(\sum_{i\in C_k}\sum_{i\in C_k}x_{ij}^2-\sum_{i,i\in C_k}2x_{ij}x_{i'j}+\sum_{i\in C_k}\sum_{i'\in C_k}x_{i'j}^2\right)=\frac{1}{|C_k|}\sum_{i\in C_k}x_{ij}^2-\sum_{i,i'\in C_k}2x_{ij}x_{i'j}+|C_k|\sum_{i'\in C_k}x_{i'j}^2\right)$ $=\frac{1}{|C_k|}\sum_{j=1}^{p}\left(2|C_k|\sum_{i\in C_k}x_{ij}^2-\sum_{i,i'\in C_k}2x_{ij}x_{i'j}\right)=2\sum_{i=1}^{p}\left(\sum_{i\in C_k}x_{ij}^2-\frac{1}{|C_k|}\sum_{i,i'\in C_k}x_{ij}x_{i'j}\right)$ $= 2\sum_{j=1}^{p} \left| \sum_{i \in C_{k}} x_{ij}^{2} - \sum_{i \in C_{k}} \left| \left( \frac{\sum_{i' \in C_{k}} x_{i'j}}{|C_{k}|} \right) x_{ij} \right| \right| = 2\sum_{j=1}^{p} \left( \sum_{i \in C_{k}} x_{ij}^{2} - \sum_{i \in C_{k}} \left( \overline{x}_{kj} x_{ij} \right) \right)$ $= 2\sum_{i=1}^{p} \sum_{i \in C} \left( x_{ij}^{2} - \bar{x}_{kj} x_{ij} \right) = 2\sum_{i=1}^{p} \sum_{i \in C} \left[ x_{ij} \left( x_{ij} - \bar{x}_{kj} \right) \right] = 2\sum_{i=1}^{p} \sum_{i \in C} \left[ \left( x_{ij} - \bar{x}_{kj} + \bar{x}_{kj} \right) \left( x_{ij} - \bar{x}_{kj} \right) \right]$ $= 2\sum_{i=1}^{p} \sum_{j \in C} \left( x_{ij} - \bar{x}_{kj} \right)^{2} + 2\sum_{i=1}^{p} \sum_{j \in C} \left[ \bar{x}_{kj} \left( x_{ij} - \bar{x}_{kj} \right) \right] = 2\sum_{i=1}^{p} \sum_{j \in C} \left( x_{ij} - \bar{x}_{kj} \right)^{2} + 2\sum_{i=1}^{p} \left| \bar{x}_{kj} \sum_{i \in C} \left( x_{ij} - \bar{x}_{kj} \right) \right|$ $= 2\sum_{j=1}^{p} \sum_{i \in C_{k}} \left( x_{ij} - \overline{x}_{kj} \right)^{2} + 2\sum_{j=1}^{p} \left| \overline{x}_{kj} \left( \sum_{i \in C_{k}} x_{ij} - |C_{k}| \overline{x}_{kj} \right) \right| = 2\sum_{j=1}^{p} \sum_{i \in C_{k}} \left( x_{ij} - \overline{x}_{kj} \right)^{2} + 2\sum_{j=1}^{p} \left[ \overline{x}_{kj} \left( \sum_{i \in C_{k}} x_{ij} - \sum_{i \in C_{k}} x_{ij} \right) \right] = 2\sum_{j=1}^{p} \sum_{i \in C_{k}} \left( x_{ij} - \overline{x}_{kj} \right)^{2} + 2\sum_{j=1}^{p} \left[ \overline{x}_{kj} \left( \sum_{i \in C_{k}} x_{ij} - \sum_{i \in C_{k}} x_{ij} \right) \right]$ $= 2\sum_{j=1}^{p} \sum_{i \in C_{j}} \left( x_{ij} - \bar{x}_{kj} \right)^{2} + 0 = 2\sum_{j=1}^{p} \sum_{i \in C_{j}} \left( x_{ij} - \bar{x}_{kj} \right)^{2} = 2\sum_{i \in C_{j}} \sum_{i=1}^{p} \left( x_{ij} - \bar{x}_{kj} \right)^{2}$ Minimize squared distance to the mean



# K-Means Clustering Algorithm

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
  - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
  - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).



#### Implementation Note

Clusters are initialized to randomly selected observations

> stats::kmeans
centers <- x[sample.int(n, k), ]</pre>



### Iterative Expectation Maximization (EM)

- Step 2b: assign observations to clusters [expectation]
- Step 2a: update the cluster centroids [maximization]
- Neither step will increase the value of the objective function [they're designed to reduce it]





# Multiple Starts [random initializations]

Perform the k-means clustering procedure multiple times and select the model that produces the lowest value for the objective function





#### Simulated Data for Hierarchical Clustering





### Hierarchical Cluster Analysis Dendrogram





#### Dendrogram Example



**Hierarchical Clustering** 



# Hierarchical Clustering Algorithm

- 1. Begin with n observations and a measure (such as Euclidean distance) of all the  $\binom{n}{2} = n(n-1)/2$  pairwise dissimilarities. Treat each observation as its own cluster.
- 2. For  $i = n, n 1, \dots, 2$ :
  - (a) Examine all pairwise inter-cluster dissimilarities among the i clusters and identify the pair of clusters that are least dissimilar (that is, most similar). Fuse these two clusters. The dissimilarity between these two clusters indicates the height in the dendrogram at which the fusion should be placed.
  - (b) Compute the new pairwise inter-cluster dissimilarities among the i-1 remaining clusters.

# Hierarchical Clustering Linkage [distance between groups]

| Linkage  | Description                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Complete | Maximal intercluster dissimilarity. Compute all pairwise dis-<br>similarities between the observations in cluster A and the<br>observations in cluster B, and record the <i>largest</i> of these<br>dissimilarities.                                                                                                                    |
| Single   | Minimal intercluster dissimilarity. Compute all pairwise dis-<br>similarities between the observations in cluster A and the<br>observations in cluster B, and record the <i>smallest</i> of these<br>dissimilarities. Single linkage can result in extended, trailing<br>clusters in which single observations are fused one-at-a-time. |
| Average  | Mean intercluster dissimilarity. Compute all pairwise dis-<br>similarities between the observations in cluster A and the<br>observations in cluster B, and record the <i>average</i> of these<br>dissimilarities.                                                                                                                       |
| Centroid | Dissimilarity between the centroid for cluster A (a mean vector of length $p$ ) and the centroid for cluster B. Centroid linkage can result in undesirable <i>inversions</i> .                                                                                                                                                          |



#### First Three Steps for Hierarchical Clustering



## Linkage: Average versus Complete versus Single



### Euclidean versus Correlation Based Distance



Variable Index

Clustering



#### To Scale or Not To Scale?



# W

# Decisions for Clustering

- Should the observations be standardized? (e.g. centered, scaled)
- What dissimilarity measure should be used?
- For hierarchical clustering, what type of linkage should be used?
- How many clusters?

# 

# Agenda

| 10 Unsupervised Learning                                                                                         | <b>373</b> |
|------------------------------------------------------------------------------------------------------------------|------------|
| 10.1 The Challenge of Unsupervised Learning                                                                      | 373        |
| 10.2 Principal Components Analysis                                                                               | 374        |
| 10.2.1 What Are Principal Components?                                                                            | 375        |
| 10.2.2 Another Interpretation of Principal Components                                                            | 379        |
| 10.2.3 More on PCA $\ldots$     | 380        |
| 10.2.4 Other Uses for Principal Components                                                                       | 385        |
| 10.3 Clustering Methods                                                                                          | 385        |
| 10.3.1 K-Means Clustering $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                              | 386        |
| 10.3.2 Hierarchical Clustering                                                                                   | 390        |
| 10.3.3 Practical Issues in Clustering                                                                            | 399        |
| 10.4 Lab 1: Principal Components Analysis                                                                        | 401        |
| 10.5 Lab 2: Clustering $\ldots$ | 404        |
| 10.5.1 K-Means Clustering $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                     | 404        |
| 10.5.2 Hierarchical Clustering                                                                                   | 406        |
| 10.6 Lab 3: NCI60 Data Example                                                                                   | 407        |
| 10.6.1 PCA on the NCI60 Data                                                                                     | 408        |
| 10.6.2 Clustering the Observations of the NCI60 Data                                                             | 410        |
| 10.7 Exercises                                                                                                   | 413        |