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Decision Trees

Regression Tree to Predict Baseball Salary

Years < 4.5
I

5.11

predicting log salary

if true
< go left
else
go right 2>

Hits <

117.5

Hits
—

6.00

6.74

4.5

24
Years

238

117.5



Decision Trees
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Steps for Constructing a Regression Tree

1. We divide the predictor space—that is, the set of possible values for
X1, Xo,..., X,—into .J distinct and non-overlapping regions,

Ri.Rs.....R;.

2. For every observation that falls into the region R;, we make the same
prediction, which is simply the mean of the response values for the

training observations in I?;.
J

: : : A 2
Based on using the Residual Sum of Squares for our loss function: E E (yg — Yr; )
j=14€R;
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For numeric features ...

o7 “o_
J S

We seek the value of “j” and that minimize the RSS for a split ...

R1(j,s) = {X[X; <s} and Ra(j,5) = 1X[Xj > s}

Z (yi — 99.1)2 T Z (yi — @Rg)g-

i x; €ER(7,8) 1 x; €ER5(7,8)
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Examples of Partitioning

Example *not* produced . fi Example produced
by recursive binary splits 2 " by recursive binary splits
[a binary split is a straight g

line that splits one region
into two]




Decision Trees

Unpruned Tree for the Hitters Data
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* One possible strategy to avoid overfitting is to build the tree only so
long as the decrease in the RSS due to each split exceeds some (high)
threshold. This strategy will result in smaller trees, but is too short-
sighted since a seemingly worthless split early on in the tree might be

followed by a very good split.

 Complexity pruning is a viable alternative: pruning nodes when the
following expression is reduced ...

Complexity Pruning

T

Z Z (y@ — 93)2 + «v

m=11. ,ER,,

T




Decision Trees

Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of .

3. Use K-fold cross-validation to choose a. That is, divide the training
observations into K folds. For each k =1,..., K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of a.

Average the results for each value of «, and pick « to minimize the

average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of «v.



Decision Trees

Regression Tree Analysis for the Hitters Data
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Decision Trees

Classification Trees

Splitting criteria for classification trees (our loss function) ...

K K
G = Z ﬁmk(l _ ﬁ*r'nk) D= — Zﬁ*mk 10% ﬁ*r'nk-
k=1 k=1

The Gini index Entropy
[a measurement of uncertainty; [an alternative to the Gini index;
compare to the variance of a refer to this as entropy

Bernoulli random variable] (*not* Cross Entropy)]
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Classification Tree to Predict Heart Disease
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Decision Trees

Tree versus Linear Model

M
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No free lunch: no model always wins
“if an algorithm performs well on a certain class of problems
then it necessarily pays for that with degraded performance on the set of all remaining problems”



Decision Trees

Advantages and Disadvantages of Trees

A Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

A Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

A Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

A Trees can easily handle qualitative predictors without the need to
create dummy variables.

V¥ Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
seen in this book.

V¥ Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.
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Bagging: Bootstrap Aggregation

e Each tree in an “ensemble” (a set of trees) is built from a bootstrap
sample of the data

Mm

fbaﬂ

T

* This reduces variance (overfitting) by preventing the learning
algorithm from using all the data



Bagging

Out Of Bag (OOB) Error Estimates

w

*Recall that around 36.8% of the data will not be
selected as part of a bootstrap sample

*\We can estimate the error for each observation
using the 0.368 * B trees where the observation
was not used as part of the training data
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Random Forest

e Each tree in an “ensemble” (a set of trees) is built from a bootstrap
sample of the data [so a Random Forest uses bagging]

* Only a randomly selected subset of predictors is considered when
splitting a region [often, m = sqgrt(p) is used as the predictor count]

* This helps to further reduce variance by promoting diversity among
(decorrelating) the trees [for example, in bagging we might expect the
best feature to appear at the top of every tree in the ensemble; but
this would be unlikely to happen for a random forest]



Random Forest

Bagging versus Random Forest for the Heart
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Random Forest

Variable Importance: Normalized Mean Gini
Decrease
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Random Forest

Random Forest for Predicting Cancer Type
m=p
To' m=p/2
S — m=/p A single classification
E tree has an error rate
L] - of 0.457
I I I I I I
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Partial Dependence Plot

How does the expected prediction change as the value of a variable

changes?

library (randomForest)

randomForest 4.6-12
Type rfNews () to see new features/changes/bug fixes.

>

o NN NN N W

Vad+++vVyV

data (airquality)

airquality = na.omit (airquality)
set.seed (2717 - 1)
model = randomForest (Ozone ~ ., data = airquality, importance = T)
imp = importance (model)
impvar = rownames (imp) [order (imp[,1l], decreasing = T)]
coordinates = partialPlot (model, pred.data = airquality, impvar[l],
xlab = impvar[l], ylab = "Ozone",
main = paste("Partial Dependence on", impvar[l]))
averagePredictions = array(length(coordinates$x))
for (i in l:length(coordinates$x)) {
modified = airquality
modified$Temp = coordinates$x[i]
averagePredictions[i] = mean (predict (model, newdata = modified))

}

points (coordinates$x, averagePredictions)
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Boosting

Boosting for Regression Trees

1. Set f(z) =0 and r; = y; for all i in the training set.
2. For b=1,2,..., B, repeat:

(a) Fit a tree f* with d splits (d + 1 terminal nodes) to the training
data (X, 7).

(b) Update f by adding in a shrunken version of the new tree:
f(x) < f(x)+ Af"(2). (8.10)
(¢) Update the residuals,
How does (8.11) relate to a gradient? ri =1 — /\fb(a:'?;). (8.11)

3. Output the boosted model,

B
flx) =Y M) (8.12)



Boosting
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1. The number of trees B. Unlike ba%]ging and random forests, boosting can
overfit if B is too large, although this overfitting tends to occur slowly if
at all. We use cross-validation to select B.

2. The shrinkage parameter A, a small positive number. This controls the
rate at which boosting learns. Typical values are 0.01 or 0.001, and the
right choice can depend on the problem. Very small A can require using a
very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity of the
boosted ensemble. Often d = 1 works well, in which case each tree is a
stump, consisting of a single split. In this case, the boosted stump
ensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls
the interaction order of the boosted model, since d splits can involve at
most d variables.

Boosting has [at least] 3 Tuning Parameters
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