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“Oh sure, going in that direction will totally minimize the objective function“
-- Sarcastic Gradient Descent
-- John Urschel, Baltimore Ravens Offensive Lineman, MIT PhD Candidate (Math)
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Course Outline

1. Introduction to Statistical 
Learning

2. Linear Regression

3. Classification

4. Resampling Methods

5. Linear Model Selection 
and Regularization

6. Moving Beyond Linearity

7. Tree-Based Methods

8. Support Vector Machines

9. Unsupervised Learning

10.Neural Networks and 
Genetic Algorithms



Agenda

Discriminant Analysis
(from last week)

Resampling Methods

Hands-On Labs
(including caret)



Validation Set Approach

• Observations are randomly divided into training and validation sets

• 50/50 split can be used; but 80/20 may be more common

• Training set appears in blue; Validation set appears in beige

Cross Validation



Repeated Validation Set Approach

One Train/Validation Set Ten Train/Validation Sets

MSE Reported for Validation Set

Cross Validation



Leave One Out Cross Validation (LOOCV)

• Each observation takes its turn as the validation set

• ‘n’ models are constructed; one for each validation set

Cross Validation



LOOCV Short Cut for Linear Regression

• We can use the leverage statistic to turn the error estimates for the 
training set into a LOOCV estimate

• For multiple regression, we use the entries of the diagonal of the 
“projection” matrix (sometimes called the hat matrix, because it is 
used to derive ො𝑦)
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K-Fold Cross Validation

• Training set appears in blue; Validation set appears in beige

• ‘k’ models are constructed; one for each validation set

Cross Validation



LOOCV versus Repeated 10-fold CV

Cross Validation



Cross Validation Applied to Simulated Data

True Error: blue
LOOCV: black
10-fold CV: beige

Cross Validation



Cross Validation for Classification Problems

•Analogous definitions apply

•Example: LOOCV

Cross Validation



Example Quadratic Logistic Regression Model

Bayes Error (dashed line) = 0.133

Error = 0.201 Error = 0.197

Error = 0.160 Error = 0.161

Cross Validation



Test versus Cross Validation versus Train Error

Logistic regression K Nearest Neighbor

Error rates for simulated data from previous slide

Test: beige
CV: black
Train: blue

Cross Validation



Minimizing the Variance of a Sum of Possibly 
Correlated Variables
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… so the gradient is …
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… solving for 𝛼 when gradient equals 0 …

The Bootstrap



Simulated Data Sets

𝛼 = 0.576 𝛼 = 0.532

𝛼 = 0.657 𝛼 = 0.651

𝛼 is the proportion of money to be invested in 𝑋 to minimize the variance of the return (risk)

The Bootstrap



Mean and Standard Deviation of 𝛼 Estimates 
for 1000 Samples of 100 Simulated Returns

Unfortunately, they did *not* share the parameters used to generate the samples.  
I say we grab torches and pitch forks, then head over to the statistics department.  Who’s with me?  
Maybe they’re just trying to prep us: we can’t handle the truth [we won’t know the truth for real data].

The Bootstrap



Simulated Values versus Bootstrap Values

Simulated Data
(based on True parameters)

Bootstrap Samples

The Bootstrap



The Bootstrap: Quantifying Uncertainty via 
Standard Error
Notice that the “Standard Error” is simply the standard deviation of the 
alpha values from the bootstrap samples!

The Bootstrap



Bootstrap Sample

A bootstrap sample of a data 
set of ‘n’ observations is 
created by drawing ‘n’ random 
samples from the data set 
*with* replacement

The Bootstrap



Yet Another Example

How do we compute a 95% confidence interval for correlation?

One way …

Is there an easier way?

library(MASS)
X = mvrnorm(1000, mu = c(0, 0), Sigma = matrix(c(9, -4.5, -4.5, 4), nrow=2))

Pearson.Correlation.Confidence.Interval = function(vector1, vector2, confidence = 0.95) {
z = qnorm(1 - (1 - confidence) / 2)
n = length(vector1)
r = cov(vector1, vector2) / (sd(vector1) * sd(vector2))
return(tanh(atanh(r) + z * c(-1, 0, 1) * sqrt(1 / (n - 3))))

}

library(boot)
Pearson.Correlation = function(X, index) { return(cov(X[index,1], X[index,2]) / (sd(X[index,1]) * sd(X[index,2]))) }
boot.ci(boot(X, statistic = Pearson.Correlation, R = 10000), conf = 0.95, type="bca")

The Bootstrap

[maybe you need to understand uncertainty for some business metric]



Repeated 5 Fold Cross Validation via CARET
set.seed(2^17-1)

library(caret)

library(class)

input = iris    # flower classification

summary(input)

indices = tapply(1:nrow(input), input[,5], sample)

trn = rbind(input[indices$setosa[1:40],],

input[indices$versicolor[1:40],],

input[indices$virginica[1:40],])

tst = rbind(input[indices$setosa[41:50],],

input[indices$versicolor[41:50],],

input[indices$virginica[41:50],])

selection = train(trn[,1:4], trn[,5], method = "knn", metric = "Accuracy", maximize = T,

trControl = trainControl(method = "repeatedcv", number = 5, repeats = 5),

tuneGrid = data.frame(k = 1:25))

table(tst[,5], knn(trn[,1:4], tst[,1:4], trn[,5], k = selection$bestTune))

plot(selection)

Model Selection Using CARET
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