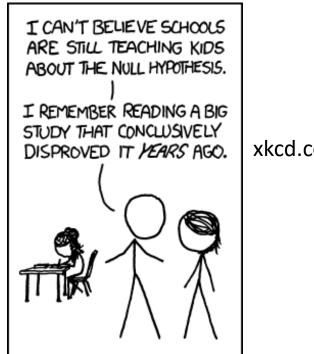


Moving Beyond Linearity

ddebarr@uw.edu

2017-02-16



xkcd.com

Course Outline

- 1. Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Resampling Methods
- 5. Linear Model Selection and Regularization

6. Moving Beyond Linearity

- 7. Tree-Based Methods
- 8. Support Vector Machines
- 9. Unsupervised Learning
- 10.Neural Networks and Genetic Algorithms

	7	Ма	ving Beyond Linearity	265
	1			
		7.1	Polynomial Regression	
12		7.2	Step Functions	
Ja		7.3	Basis Functions	270
		7.4	Regression Splines	271
			7.4.1 Piecewise Polynomials	271
			7.4.2 Constraints and Splines	271
			7.4.3 The Spline Basis Representation	273
			7.4.4 Choosing the Number and Locations	
			of the Knots	274
			7.4.5 Comparison to Polynomial Regression	276
		7.5	Smoothing Splines	
			7.5.1 An Overview of Smoothing Splines	277
			7.5.2 Choosing the Smoothing Parameter λ	278
		7.6	Local Regression	280
		7.7	Generalized Additive Models	282
			7.7.1 GAMs for Regression Problems	283
			7.7.2 GAMs for Classification Problems	
		7.8	Lab: Non-linear Modeling	
			7.8.1 Polynomial Regression and Step Functions	
			7.8.2 Splines \ldots	
			7.8.3 GAMs	
		7.9	Exercises	

Agenda

Introduction

Modeling Nonlinear Relationships

- Polynomial regression extends the linear model by adding extra predictors
- Step functions cut the range of a variable into "k" distinct regions
- Regression splines are more flexible than polynomials and step functions
- Smoothing splines include a smoothness penalty
- Local regression makes use of distance information to perform regression
- Generalized Additive Models (GAMs) allow us to extend the above approaches to deal with multiple predictors

Polynomial Regression

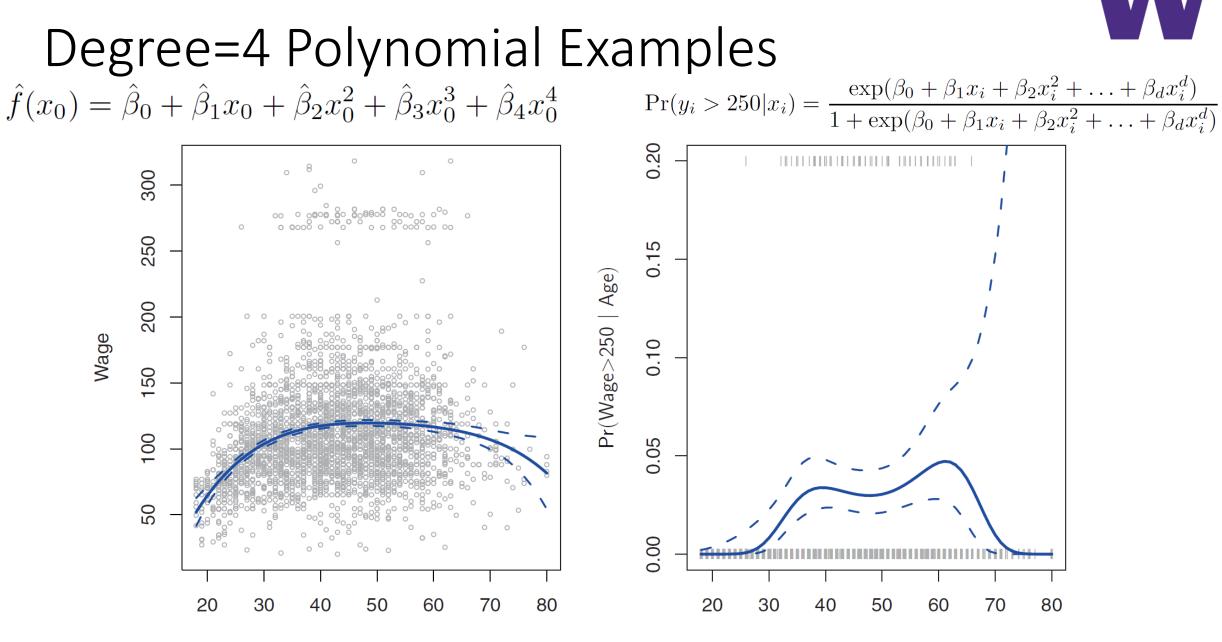
• Simple Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

• Polynomial Linear Regression [still only one predictor]

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \ldots + \beta_d x_i^d + \epsilon_i$$

Polynomial Regression

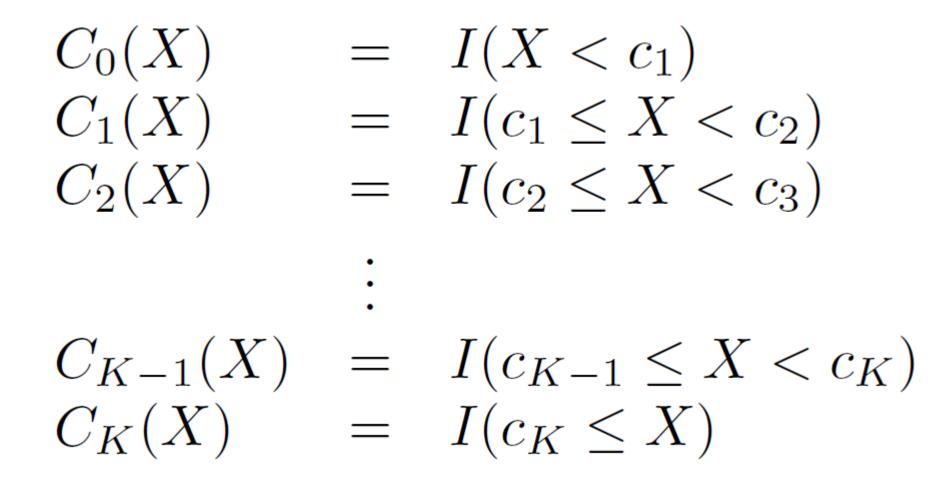


Age

Age

Step Functions

Step Functions

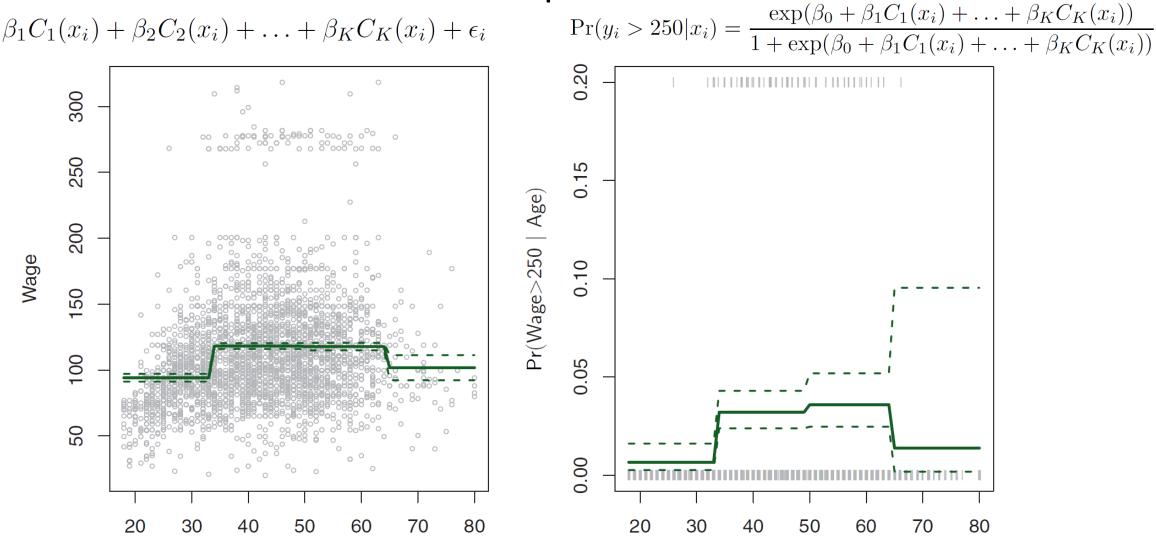


 $I(c_K \leq X)$ equals 1 if $c_K \leq X$, and equals 0 otherwise

Step Functions

Piecewise Constant: Step Function Example

 $y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \ldots + \beta_K C_K(x_i) + \epsilon_i$



Age

Age

Basis Functions

• Basis Functions Model

 $y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + \ldots + \beta_K b_K(x_i) + \epsilon_i$

• Polynomial Regression Example

 $b_j(x_i) = x_i^j$

• Step Function Example

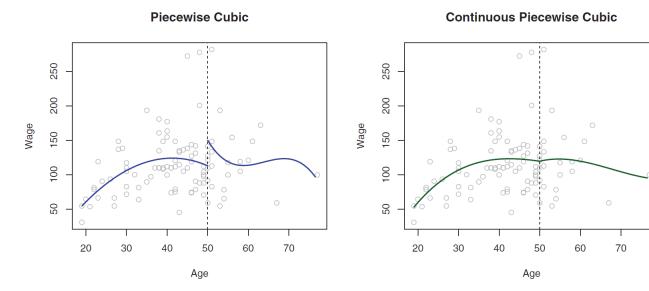
$$b_j(x_i) = I(c_j \le x_i < c_{j+1})$$

Regression Splines: Piecewise Polynomials

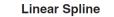
$$y_{i} = \begin{cases} \beta_{01} + \beta_{11}x_{i} + \beta_{21}x_{i}^{2} + \beta_{31}x_{i}^{3} + \epsilon_{i} & \text{if } x_{i} < c \\ \beta_{02} + \beta_{12}x_{i} + \beta_{22}x_{i}^{2} + \beta_{32}x_{i}^{3} + \epsilon_{i} & \text{if } x_{i} \ge c \end{cases}$$

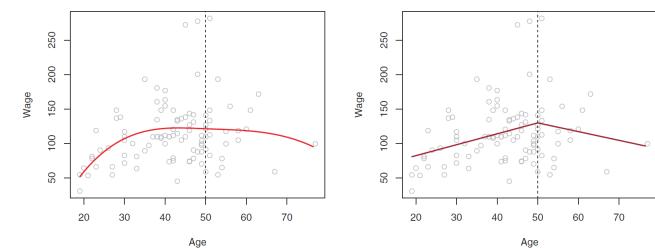
'c' is called a knot

Constraints and Splines



Cubic Spline





Spline Basis Representation

• Model for a cubic spline with 'k' knots

 $y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$

• One truncated power basis function per knot: 4 + K degrees of freedom

$$h(x,\xi) = (x-\xi)_+^3 = \begin{cases} (x-\xi)^3 & \text{if } x > \xi \\ 0 & \text{otherwise} \end{cases}$$

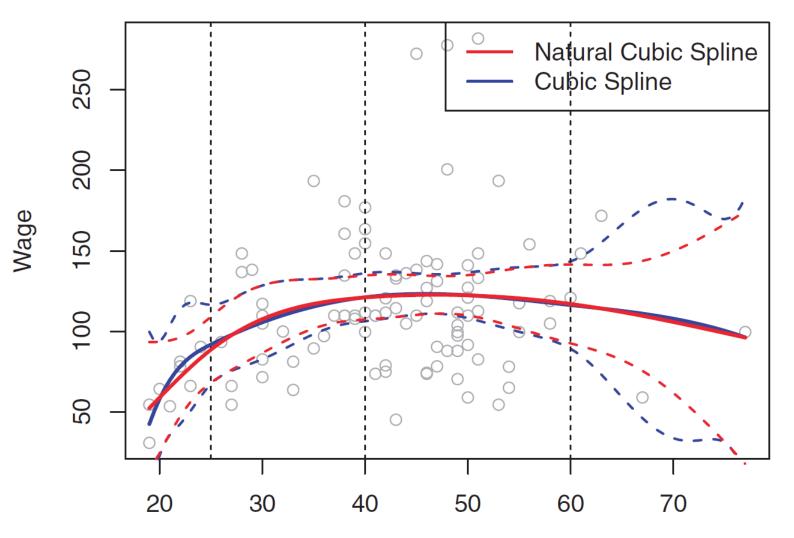
The Greek letter ξ is pronounced zi [looks cooler than using 'c'?]

Basis Splines Example

```
> library(ISLR)
> age.limits =range(Wage$age)
> age.grid = seq(from = age.limits[1], to = age.limits[2]) # 18 .. 80
>
> library(splines)
> model1 = lm(wage \sim bs(age, knots = c(25, 40, 60)), data = Wage)
> predictions1 = predict(model1, Wage)
> predictions1[1:5]
   231655
             86582 161300 155159
                                            11443
 60.49371 82.84196 119.39567 118.91764 119.41254
>
> X = cbind(Wage$age,
           Wage$age^2,
+
           Wage$age^3,
+
+
            ifelse(Wage$age > 25, (Wage$age - 25)^3, 0),
            ifelse(Wage$age > 40, (Wage$age - 40)^3, 0),
+
            ifelse(Wage$age > 60, (Wage$age - 60)^3, 0))
+
> model2 = lm(Wage$wage \sim X)
> predictions2 = predict(model2, data.frame(X))
> predictions2[1:5]
                            3
                                                 5
        1
 60.49371 82.84196 119.39567 118.91764 119.41254
```

Regression Splines

Natural Cubic Spline versus Cubic Spline



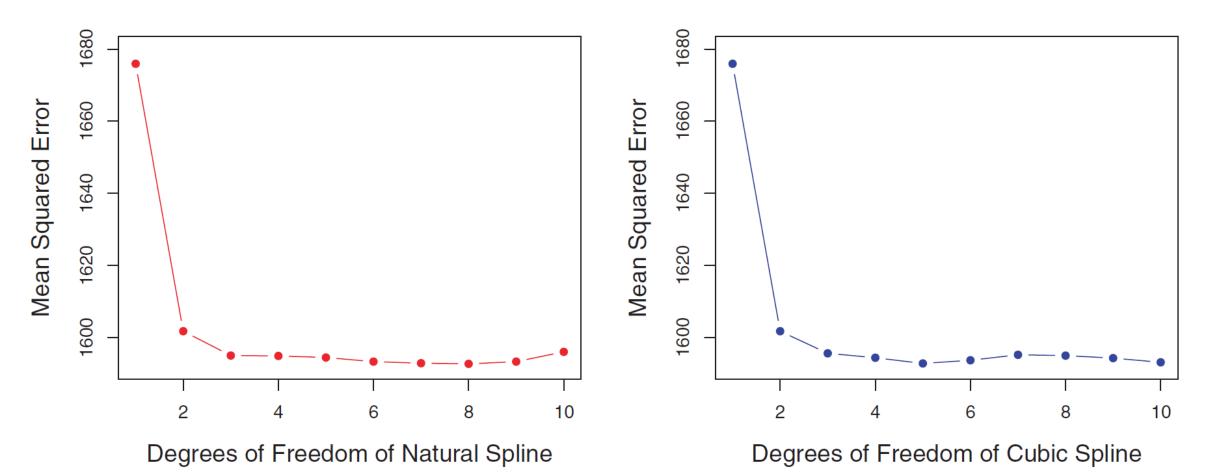
- Natural: the function is required to be linear at the boundary (when smaller than the smallest knot or larger than the largest knot)
- Note the width of the confidence intervals

Age

Regression Splines

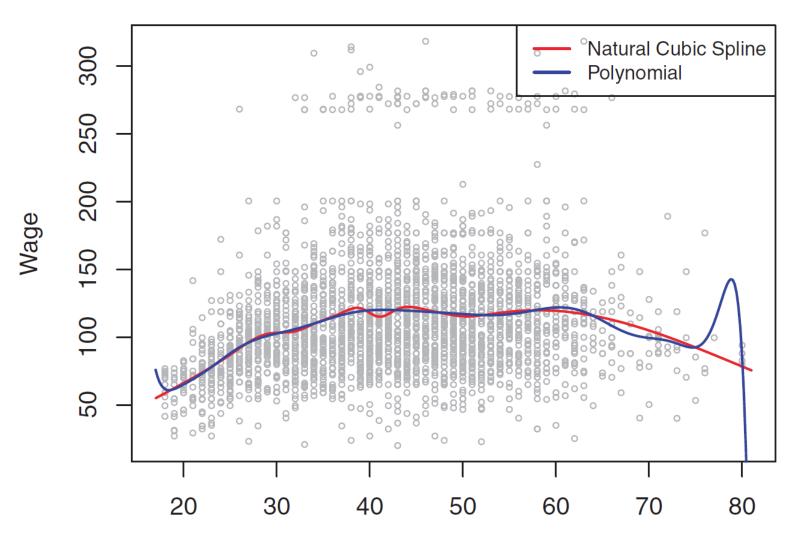
Choosing the Number and Location of the Knots

• This is model selection, and cross validation is our friend ...



Regression Splines

Comparison to Polynomial Regression



Smoothing Splines

• Penalizing the squared second derivative of the prediction function

$$\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

$$\hat{\mathbf{g}}_{\lambda} = \mathbf{S}_{\lambda}\mathbf{y}$$

$$df_{\lambda} = \sum_{i=1}^{n} \{\mathbf{S}_{\lambda}\}_{ii}$$

Cross validation used to select effective degrees of freedom

Smoother Matrix

From Chapter 5 of The Elements of Statistical Learning ...

$$RSS(\theta, \lambda) = (\mathbf{y} - \mathbf{N}\theta)^T (\mathbf{y} - \mathbf{N}\theta) + \lambda \theta^T \mathbf{\Omega}_N \theta, \qquad (5.11)$$

where $\{\mathbf{N}\}_{ij} = N_j(x_i)$ and $\{\Omega_N\}_{jk} = \int N_j''(t)N_k''(t)dt$. The solution is easily seen to be

$$\hat{\theta} = (\mathbf{N}^T \mathbf{N} + \lambda \mathbf{\Omega}_N)^{-1} \mathbf{N}^T \mathbf{y}, \qquad (5.12)$$

a generalized ridge regression. The fitted smoothing spline is given by

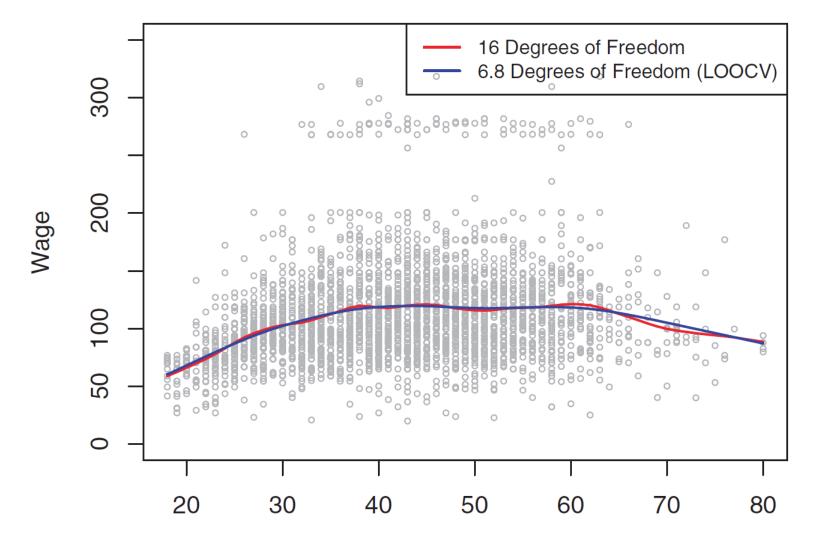
$$\hat{f}(x) = \sum_{j=1}^{N} N_j(x)\hat{\theta}_j.$$

$$\hat{\mathbf{f}} = \mathbf{N}(\mathbf{N}^T \mathbf{N} + \lambda \mathbf{\Omega}_N)^{-1} \mathbf{N}^T \mathbf{y}$$

$$= \mathbf{S}_{\lambda} \mathbf{y}.$$
(5.13)

Smoothing Splines

Simple Smoothing Spline Examples



Smoothing Splines

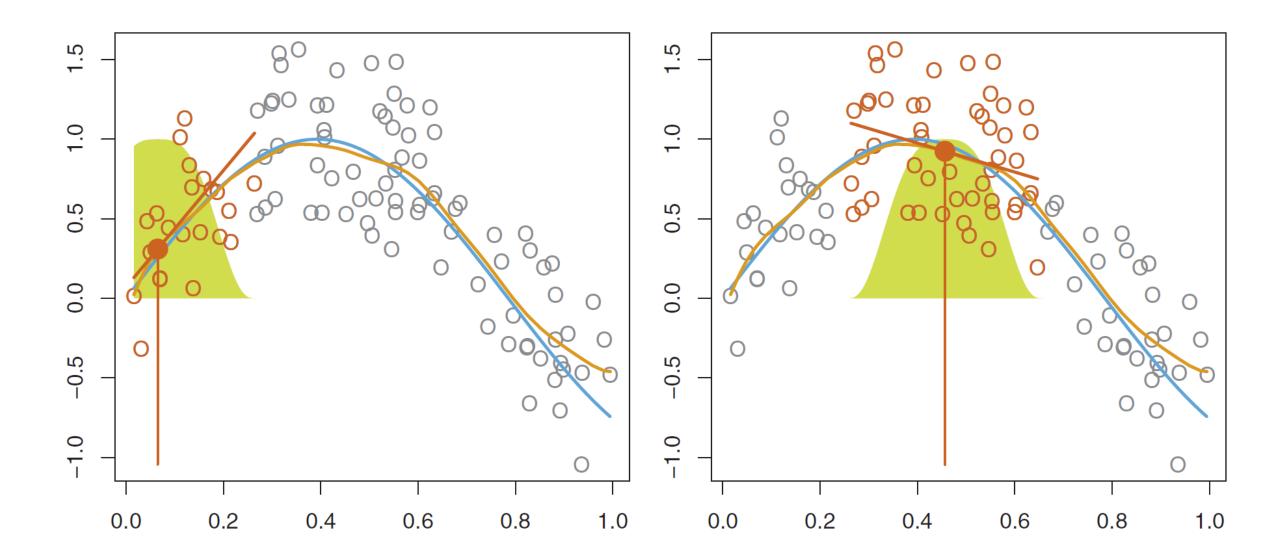
W

Simple Smoothing Spline Example

```
> library(ISLR)
> library(splines)
> Smoother.Matrix = function(x, df) {
+
     n = length(x)
     S = matrix(0, n, n)
+
     for(i in 1:n) {
+
+
          y = rep(0, n)
+
         v[i] = 1
+
          S[,i] = predict(smooth.spline(x, y, df = df), x)$y
+
      }
+
      return((S + t(S)) / 2)
+ }
> S = Smoother.Matrix(Wage$age, df = 6.8)
> model = smooth.spline(Wage$age, Wage$wage, df = 6.8)
> model$df
[1] 6.801142
> sum(diag(S))
[1] 6.801142
> estimates = S %*% Wage$wage
> predictions = predict(model, Wage$age)$y
> estimates[1:5]
[1] 60.46695 83.49226 119.53504 119.70016 117.82229
> predictions[1:5]
   60.46695 83.49226 119.53504 119.70016 117.82229
[1]
```

Local Regression

Local Regression (Loess)



Local Regression

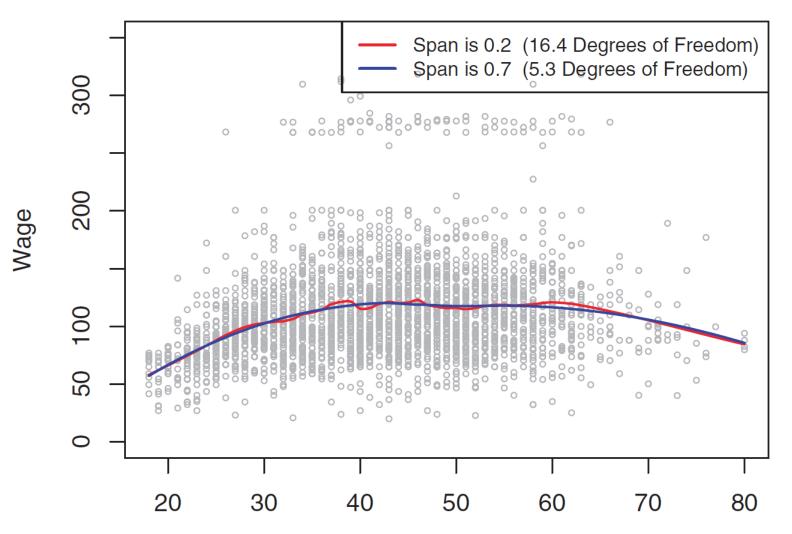
Local Regression Algorithm

- 1. Gather the fraction s = k/n of training points whose x_i are closest to x_0 . ['s' is the span parameter of the loess() function]
- 2. Assign a weight $K_{i0} = K(x_i, x_0)$ to each point in this neighborhood, so that the point furthest from x_0 has weight zero, and the closest has the highest weight. All but these k nearest neighbors get weight zero.
- 3. Fit a weighted least squares regression of the y_i on the x_i using the aforementioned weights, by finding $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize

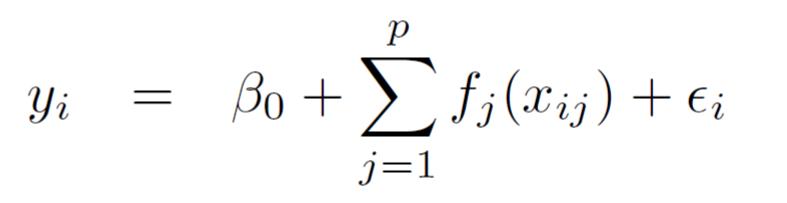
$$\sum_{i=1}^{n} K_{i0} (y_i - \beta_0 - \beta_1 x_i)^2.$$
 (7.14)

4. The fitted value at x_0 is given by $\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

Local Regression Example



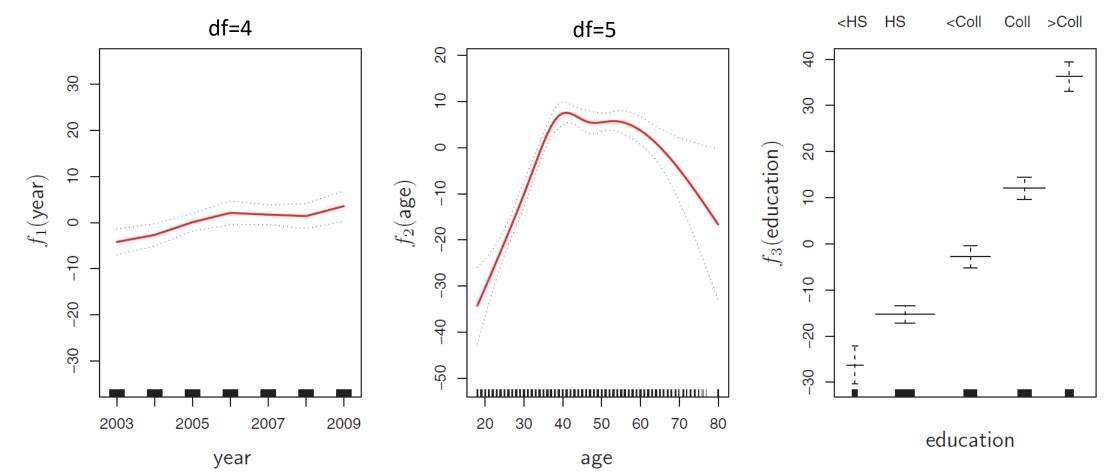
Generalized Additive Model (GAM)



 $= \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$

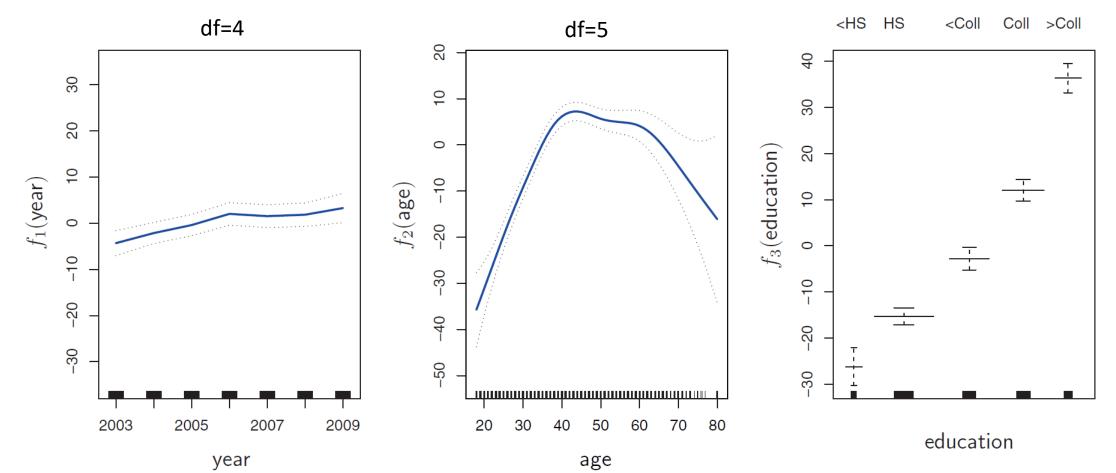
GAM Example with Natural Splines

wage = $\beta_0 + f_1(\text{year}) + f_2(\text{age}) + f_3(\text{education}) + \epsilon$



GAM Example with Smoothing Splines

wage = $\beta_0 + f_1(\text{year}) + f_2(\text{age}) + f_3(\text{education}) + \epsilon$



The Pros and Cons of GAMs

- Pro: allows us to fit a non-linear f() to each predictor, so we can automatically model non-linear relationships that standard linear regression will miss
- Pro: potentially more accurate predictions
- Pro: the model is additive so we can examine the effect of each predictor [while holding the other predictors fixed]
- Pro: the smoothness of the f() for each predictor, can be summarized by the degrees of freedom
- Con: the model is restricted to be additive

GAMs Can Also Be Used for Classification

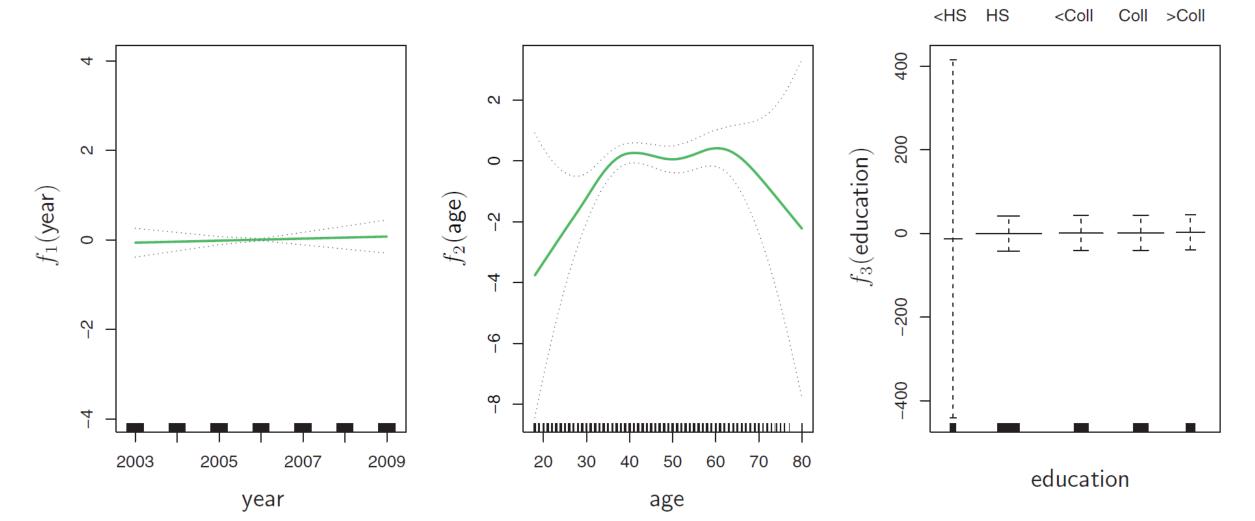
• Model
$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p)$$

• Example
$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 \times \text{year} + f_2(\text{age}) + f_3(\text{education})$$

 $p(X) = \Pr(\texttt{wage} > 250 | \texttt{year}, \texttt{age}, \texttt{education})$

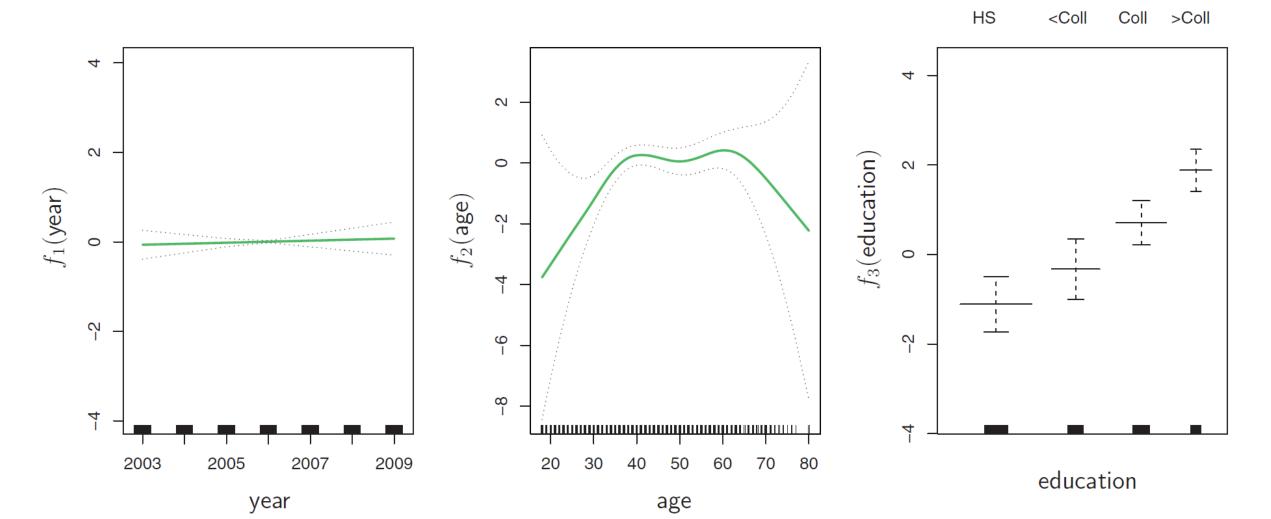
GAM Example for Classification

Check out the confidence interval for Education < HS ...



GAM Example for Classification

After removing the observations for which Education < HS ...



	7	Mov	ving Beyond Linearity	265	
		7.1	Polynomial Regression	266	
		7.2	Step Functions		
nda		7.3	Basis Functions		_
		7.4	Regression Splines		
			7.4.1 Piecewise Polynomials		
			7.4.2 Constraints and Splines		
			7.4.3 The Spline Basis Representation		
			7.4.4 Choosing the Number and Locations		
			of the Knots	274	
			7.4.5 Comparison to Polynomial Regression	276	
		7.5	Smoothing Splines		
			7.5.1 An Overview of Smoothing Splines	277	
			7.5.2 Choosing the Smoothing Parameter λ		
		7.6	Local Regression	280	
		7.7	Generalized Additive Models	282	
			7.7.1 GAMs for Regression Problems	283	
			7.7.2 GAMs for Classification Problems	286	
		7.8	Lab: Non-linear Modeling		
			7.8.1 Polynomial Regression and Step Functions	288	
			7.8.2 Splines	293	
			7.8.3 GAMs	294	
		7.9	Exercises	297	

Agenda