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“In God we trust, all others bring data.” – William Edwards Deming
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Course Outline

1. Introduction to Statistical 
Learning

2. Linear Regression

3. Classification

4. Resampling Methods

5. Linear Model Selection 
and Regularization

6. Moving Beyond Linearity

7. Tree-Based Methods

8. Support Vector Machines

9. Unsupervised Learning

10.Neural Networks and 
Genetic Algorithms



Agenda

Homework Review

Probability

Chapter 3

Gradient Descent

Robust Regression



Probability

• Probability: the proportion of outcomes that we expect to meet some 
condition
• Probability(Flipped Coin Lands on Heads)

• Probability(Face of a Rolled Die Displays an Even Number)

• Joint Probability for Independent Events: the product of the individual 
probabilities
• Reminder: log(Probability1 * Probability2) = log(Probability1) + log(Probability2)

• Fun Fact: the central limit theorem says the sum of a sufficiently large set 
of independent identically distributed random variables can be modeled 
as a Gaussian (bell curve) distribution [useful for arithmetic means]



Questions for the Advertising Data

1. Is there a relationship between advertising budget and sales?

2. How strong is the relationship between advertising budget and 
sales?

3. Which media contributes to sales?

4. How accurately can we estimate the effect of each medium on 
sales?

5. How accurately can we predict future sales?

6. Is the relationship linear?

7. Is there synergy among the advertising data?

Questions to Answer



Simple Linear Regression

The slope measures the rate of change.The intercept moves the line up and down.

Simple Linear Regression



Estimating the Coefficients

Simple Linear Regression: Example



Residuals

• Residual Sum of Squares (RSS)

• Residual Standard Error (RSE)

=

Simple Linear Regression: Evaluating Error



Simple Linear Regression

• Simple linear regression only has one predictor

• Slope and intercept are computed as …

Simple Linear Regression: Estimating the Coefficients



RSS as a Function of the Regression Coefficients

3-D PlotContour Plot

Simple Linear Regression: Optimization Surface



Derivation of the Maximum Likelihood 
Estimate for Multiple Regression

Maximum Likelihood Estimation

The negative log likelihood of the
data is proportional to the residual
sum of squared errors
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Simulated Regression Problem

Red line is the population regression line f(X) = 2 + 3*x; blue lines are estimates based on random samples

Simple Linear Regression: Multiple Solutions



Standard Error of a Mean

• The standard error of a mean quantifies our uncertainty about the 
mean

• We can estimate the lower and upper bounds of a 95% confidence 
interval for the mean as the 2.5th and 97.5th percentiles of a “t” 
distribution with mean = 0, standard deviation = SE, and degrees of 
freedom = n - 1

Simple Linear Regression: Uncertainty about a Mean



Standard Error of the Regression Coefficients

• The standard error of a regression coefficient quantifies our uncertainty 
about the regression coefficient

• We can estimate the lower and upper bounds of a 95% confidence interval 
for a regression coefficient as the 2.5th and 97.5th percentiles of a “t” 
distribution with mean = መ𝛽𝑗, standard deviation = SE, and degrees of 
freedom = n - 2

Simple Linear Regression: Uncertainty about Regression Coefficients



Hypothesis Test for a Regression Coefficient

• The “t test” for the regression coefficient compares “t” to the “t” 
distribution with mean = 0, standard deviation = SE, and degrees of 
freedom = n – 2 [to compute a “p value”: the probability of observing a test 
statistic as extreme (as far from the mean) as the value of “t”]

Null Hypothesis Alternative Hypothesis

Test Statistic: the ratio of a difference to its standard error

Simple Linear Regression: Uncertainty about Regression Coefficients



Evaluating the Coefficients for our First Model

Simple Linear Regression: Uncertainty about Regression Coefficients



Additional Statistics for the Model

Simple Linear Regression: Evaluating the Relationship between Input and Output Variables



Three Simple Linear Regressions

Multiple Linear Regression: Cannot Combine Simple Linear Regression Models



Multiple Linear Regression

Multiple: more than one predictor

Multiple Linear Regression: Model Specification



Simple Multiple Regression Example

Notice that the regression plane cuts through the middle of the observations

Multiple Linear Regression: Example



Multiple Regression for the Advertising Data

Notice that the newspaper effect is no longer statistically significant;
and the newspaper budget is positively correlated with the radio budget

Multiple Linear Regression: Evaluating Predictors



Some Important Questions

Multiple Linear Regression: Questions



1. Is there a relationship between the 
Response and Predictors?

If the null hypothesis is true, this ratio will be one; otherwise this will be larger than 1 

Multiple Linear Regression: Questions



2. Deciding on Important Variables

• Various statistics can be used to evaluate the quality of the model 
(e.g. assessing various penalties for complexity): Mallow’s Cp, Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and 
Adjusted R2 [more later]

• Feature Selection
• Forward Selection: add one variable at a time, choosing the variable that best 

reduces the RSS

• Backward Selection: remove one variable at a time, choosing the variable 
with the largest p value

• Mixed Selection: use forward selection, but remove any variable that exceeds 
a threshold p value

Multiple Linear Regression: Questions



3. Model Fit

Does this plane look like it splits the observations?

Multiple Linear Regression: Questions



4. Predictions

• Three types of uncertainty
• Confidence interval: for the prediction of the mean output variable [the mean 

for a particular input vector]

• Prediction interval: for the prediction of the output variable

• Model bias: the error caused by choosing a linear model when the true model 
[which is unknown] does not match the model used

Multiple Linear Regression: Questions



Quantitative Variables for the Credit Data Set

Other Considerations: Qualitative Predictors



Example of a Model with a Qualitative 
Predictor

• Interpretation: the average Balance for gender=Male is $509.80, 
while the average Balance for gender=Female is $19.73 more

• Note: the p value is not significant

Other Considerations: Qualitative Variables



Alternative Coding Scheme for Dummy Var

• Interpretation: average overall balance is Beta[0], with Beta[1] added 
to derive the average Balance for gender=Female and Beta[1] 
subtracted to derive the average Balance for gender=Male

Other Considerations: Qualitative Variables



Qualitative Predictors with More than Two 
Values

Other Considerations: Qualitative Variables



Evaluating the Predictors

Other Considerations: Qualitative Variables



Extensions: Interactions

• Add an interaction term

Other Considerations: Interactions



Extensions: Interactions

Other Considerations: Interactions



Extensions: Non-Linear Relationships

Polynomial Regression

Other Considerations: Non-Linearity



Potential Problem: Non-Linearity of the Data

• Consider transform of predictors; e.g. log(x), sqrt(x), x^2, …

Potential Problems



Problem: Correlation of Error Terms

• Can lead to underestimating the error terms

• May observe “tracking” among the residuals (2nd and 3rd plots)

Potential Problems



Problem: Non-Constant Variance of Error 
Terms
• Consider transforming the output

• Use weighted least squares when using average output values

Potential Problems



Problem: Outliers

• Unusual output value may increase the RSE and reduce R2

Potential Problems



Problem: High Leverage Points

• Unusual input values may modify the model

Potential Problems



Problem: Collinearity

• Correlated variables: called multi-collinearity if more than two 
variables are involved

Potential Problems



Problem: Collinearity: Example

Potential Problems



Problem: Collinearity: Detecting Collinearity

• Variance Inflation Factor [variable Xj predicted by other variables] 

• Large values indicate a collinearity problem

Potential Problems



Return to Questions for the Advertising Data

1. Is there a relationship between advertising sales and budget?  F test (RSS)

2. How strong is the relationship?  RSE; R2

3. Which media contribute to sales?    t test (coefficients)

4. How large is the effect of each medium on sales?  confidence interval (coefs)

5. How accurate can we predict future sales?  confidence/prediction intervals

6. Is the relationship linear?  residual plot

7. Is there synergy among the advertising media?  interactions

Questions to Answer



KNN Regression: Which has higher variance?

K = 1 K = 9

Linear Regression v KNN Regression



KNN Regression: with Only 1 Predictor

K = 1 K = 9

Linear Regression v KNN Regression



Round 1: Linear Regression versus KNN

Linear Regression v KNN Regression



Rounds 2 and 3: Linear Regression v KNN

Higher complexity function

Linear Regression v KNN Regression



Rounds 4 – 8: Linear Regression v KNN

Higher complexity function, but with various quantities of noise

Linear Regression v KNN Regression



Chain Rule for Gradient Descent

Gradient Descent for Regression
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• We want to move the weight in the opposite direction of the partial derivative of the 
loss function with respect to this weight

• See example code near bottom of http://cross-entropy.net/ML210/linear_regression.txt

http://cross-entropy.net/ML210/linear_regression.txt


Gradient for Mean Squared Error Loss
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Gradient Descent for Regression



Robust Regression

•We use Laplacian loss (absolute error) 
rather than Gaussian loss (squared) 
error

•A Linear Programming (LP) solver is used 
to derive the coefficients for Laplacian 
loss [constrained optimization]

Robust Regression



Robust Regression Example

See example code at bottom of http://cross-entropy.net/ML210/linear_regression.txt

Robust Regression

http://cross-entropy.net/ML210/linear_regression.txt
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