

Linear Regression

ddebarr@uw.edu

2017-01-19

"In God we trust, all others bring data." – William Edwards Deming

Course Outline

- 1. Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Resampling Methods
- 5. Linear Model Selection and Regularization

- 6. Moving Beyond Linearity
- 7. Tree-Based Methods
- 8. Support Vector Machines
- 9. Unsupervised Learning
- 10.Neural Networks and Genetic Algorithms

Agenda

ngenaa	3	Line	ear Regression	59
		3.1	Simple Linear Regression	61
			3.1.1 Estimating the Coefficients	61
			3.1.2 Assessing the Accuracy of the Coefficient	
			Estimates	63
Homework Review			3.1.3 Assessing the Accuracy of the Model	68
		3.2	Multiple Linear Regression	71
Probability			3.2.1 Estimating the Regression Coefficients	72
			3.2.2 Some Important Questions	75
Chapter 3		3.3	Other Considerations in the Regression Model	82
			3.3.1 Qualitative Predictors	82
			3.3.2 Extensions of the Linear Model	86
Gradient Descent			3.3.3 Potential Problems	92
		3.4	The Marketing Plan	102
Robust Regression		3.5	Comparison of Linear Regression with K -Nearest	
-			Neighbors	104
		3.6	Lab: Linear Regression	109
			3.6.1 Libraries \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	109
			3.6.2 Simple Linear Regression	110
			3.6.3 Multiple Linear Regression	113
			3.6.4 Interaction Terms	115
			3.6.5 Non-linear Transformations of the Predictors	115
			3.6.6 Qualitative Predictors	117
			3.6.7 Writing Functions	119
		3.7	Exercises	120

W

Probability

- Probability: the proportion of outcomes that we expect to meet some condition
 - Probability(Flipped Coin Lands on Heads)
 - Probability(Face of a Rolled Die Displays an Even Number)
- Joint Probability for Independent Events: the product of the individual probabilities
 - Reminder: log(Probability1 * Probability2) = log(Probability1) + log(Probability2)
- Fun Fact: the central limit theorem says the sum of a sufficiently large set of independent identically distributed random variables can be modeled as a Gaussian (bell curve) distribution [useful for arithmetic means]

Questions for the Advertising Data

- 1. Is there a relationship between advertising budget and sales?
- 2. How strong is the relationship between advertising budget and sales?
- 3. Which media contributes to sales?
- 4. How accurately can we estimate the effect of each medium on sales?
- 5. How accurately can we predict future sales?
- 6. Is the relationship linear?
- 7. Is there synergy among the advertising data?

Simple Linear Regression

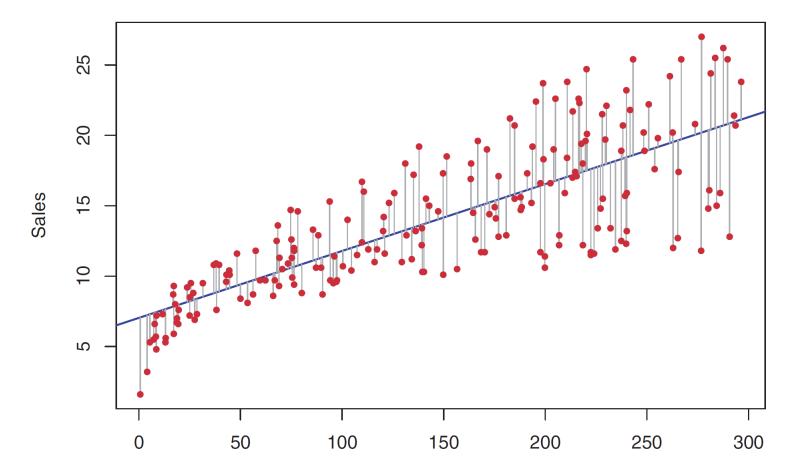
- $Y \approx \beta_0 + \beta_1 X \qquad \qquad Y = \beta_0 + \beta_1 X + \epsilon$
- read " \approx " as "is approximately modeled as" **sales** $\approx \beta_0 + \beta_1 \times \text{TV}$ $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ hat symbol, \hat{y} , to denote the estimated value

The intercept moves the line up and down.

The slope measures the rate of change.

Estimating the Coefficients

 $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$



Residuals

 $e_i = y_i - \hat{y}_i$ represents the *i*th *residual*

- Residual Sum of Squares (RSS) $\operatorname{RSS} = e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$
- Residual Standard Error (RSE)

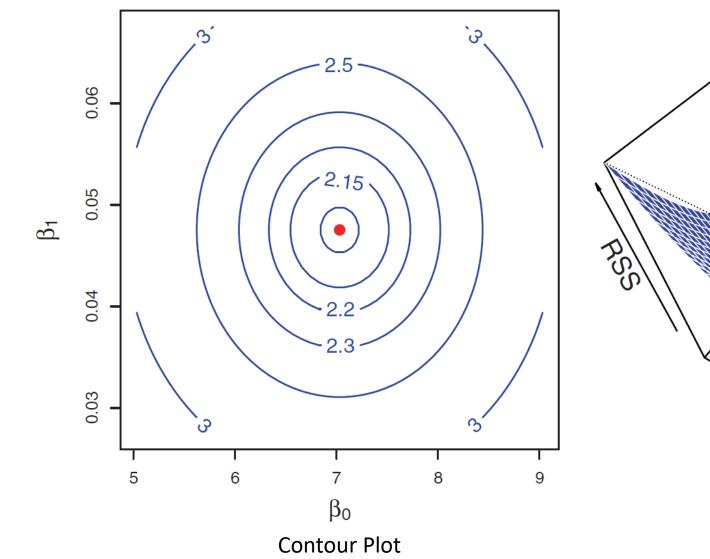
$$\sqrt{\text{RSS}/(n-2)}$$

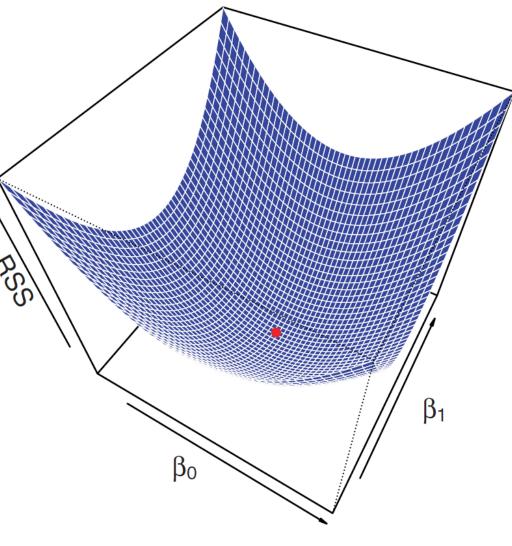
Simple Linear Regression

- Simple linear regression only has one predictor
- Slope and intercept are computed as ...

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x},$$

RSS as a Function of the Regression Coefficients





Maximum Likelihood Estimation

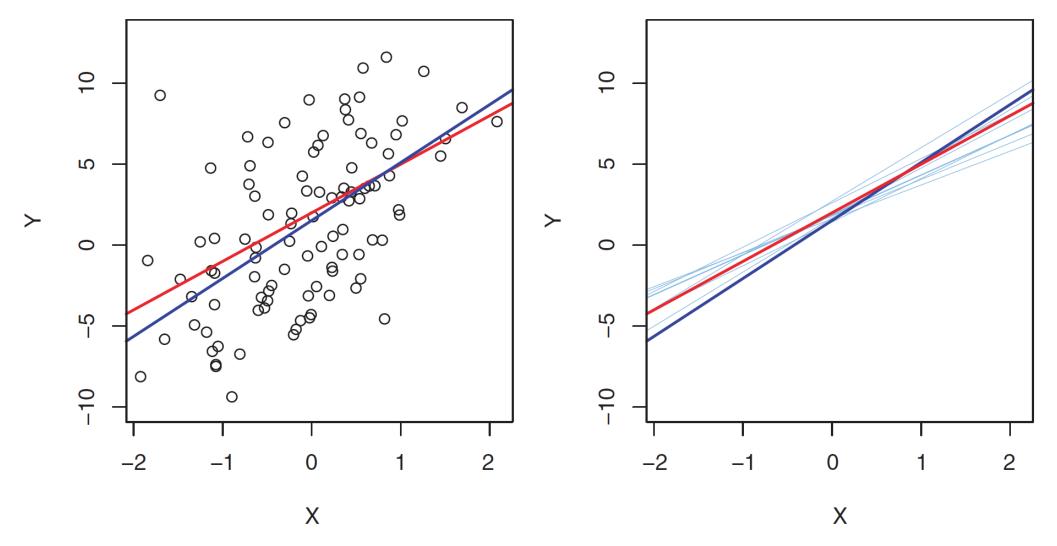
Derivation of the Maximum Likelihood Estimate for Multiple Regression

The negative log likelihood of the data is proportional to the residual sum of squared errors

 $e = y - X\beta$ $RSS = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ $RSS = (\mathbf{y}^T - \boldsymbol{\beta}^T \mathbf{X}^T)(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ $RSS = \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$ $RSS = \mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}$SO... $\frac{\partial RSS}{\partial \boldsymbol{\beta}} = \mathbf{0} - 2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\beta}$... setting the gradient equal to 0 and solving for β ... $-2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = 0$ $2\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = 2\mathbf{X}^T\mathbf{y}$ $\mathbf{v}^T \mathbf{v} \mathbf{\rho} = \mathbf{v}^T \mathbf{v}$

$$\mathbf{A} \quad \mathbf{A}\mathbf{p} = \mathbf{A} \quad \mathbf{y}$$
$$\mathbf{\beta} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Simulated Regression Problem



Red line is the population regression line $f(X) = 2 + 3^*x$; blue lines are estimates based on random samples

Standard Error of a Mean

$$\operatorname{Var}(\hat{\mu}) = \operatorname{SE}(\hat{\mu})^2 = \frac{\sigma^2}{n}$$

- The standard error of a mean quantifies our uncertainty about the mean
- We can estimate the lower and upper bounds of a 95% confidence interval for the mean as the 2.5th and 97.5th percentiles of a "t" distribution with mean = 0, standard deviation = SE, and degrees of freedom = n - 1

Standard Error of the Regression Coefficients

$$SE(\hat{\beta}_{0})^{2} = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right]$$
$$SE(\hat{\beta}_{1})^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- The standard error of a regression coefficient quantifies our uncertainty about the regression coefficient
- We can estimate the lower and upper bounds of a 95% confidence interval for a regression coefficient as the 2.5th and 97.5th percentiles of a "t" distribution with mean = $\hat{\beta}_j$, standard deviation = SE, and degrees of freedom = n 2

Hypothesis Test for a Regression Coefficient

Null Hypothesis

Alternative Hypothesis

 $H_0: \beta_1 = 0 \qquad \qquad H_a: \beta_1 \neq 0$

Test Statistic: the ratio of a difference to its standard error

 $t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$

The "t test" for the regression coefficient compares "t" to the "t" distribution with mean = 0, standard deviation = SE, and degrees of freedom = n - 2 [to compute a "p value": the probability of observing a test statistic as extreme (as far from the mean) as the value of "t"]

Evaluating the Coefficients for our First Model

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Simple Linear Regression: Evaluating the Relationship between Input and Output Variables

Additional Statistics for the Model

Quantity	Value
Residual standard error	3.26
R^2	0.612
F-statistic	312.1

$$R^{2} = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$
$$\text{Cor}(X, Y) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}}$$

Three Simple Linear Regressions

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	< 0.0001

Multiple Linear Regression

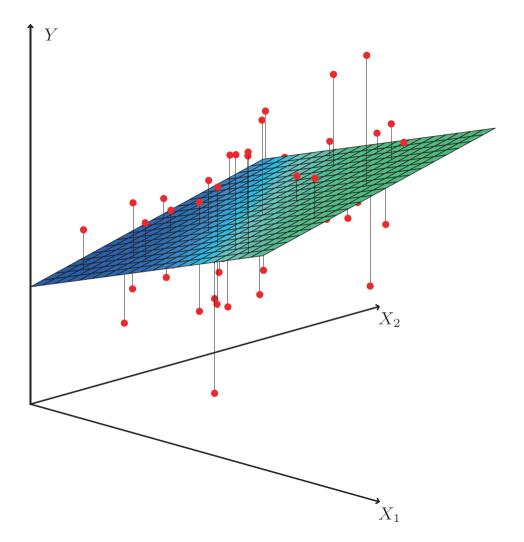
Multiple: more than one predictor

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

 $\texttt{sales} = \beta_0 + \beta_1 \times \texttt{TV} + \beta_2 \times \texttt{radio} + \beta_3 \times \texttt{newspaper} + \epsilon$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

Simple Multiple Regression Example



Notice that the regression plane cuts through the middle of the observations

Multiple Regression for the Advertising Data

	Coeffici	ent St	d. error	t-statistic	p-value
					^
${\tt Intercept}$	2.9	939	0.3119	9.42	< 0.0001
TV	0.0	046	0.0014	32.81	< 0.0001
radio	0.1	189	0.0086	21.89	< 0.0001
newspaper	-0.0	001	0.0059	-0.18	0.8599
	TV	radio	nouanon	er sales	
	L V	Taulo	newspap	er sales	_
TV	1.0000	0.0548	0.0567	0.7822	
radio		1.0000	0.3541	0.5762	
newspaper			1.0000	0.2283	
sales				1.0000	

Notice that the newspaper effect is no longer statistically significant; and the newspaper budget is positively correlated with the radio budget

Some Important Questions

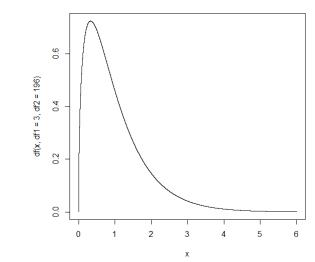
- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Multiple Linear Regression: Questions

1. Is there a relationship between the
Response and Predictors?
$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$
$$H_a: \text{ at least one } \beta_j \text{ is non-zero}$$
$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{TSS}} = \sum (y_i - \bar{y})^2$$

$$\Gamma = \overline{\text{RSS}/(n-p-1)}$$
 RSS = $\sum (y_i - \hat{y}_i)^2$

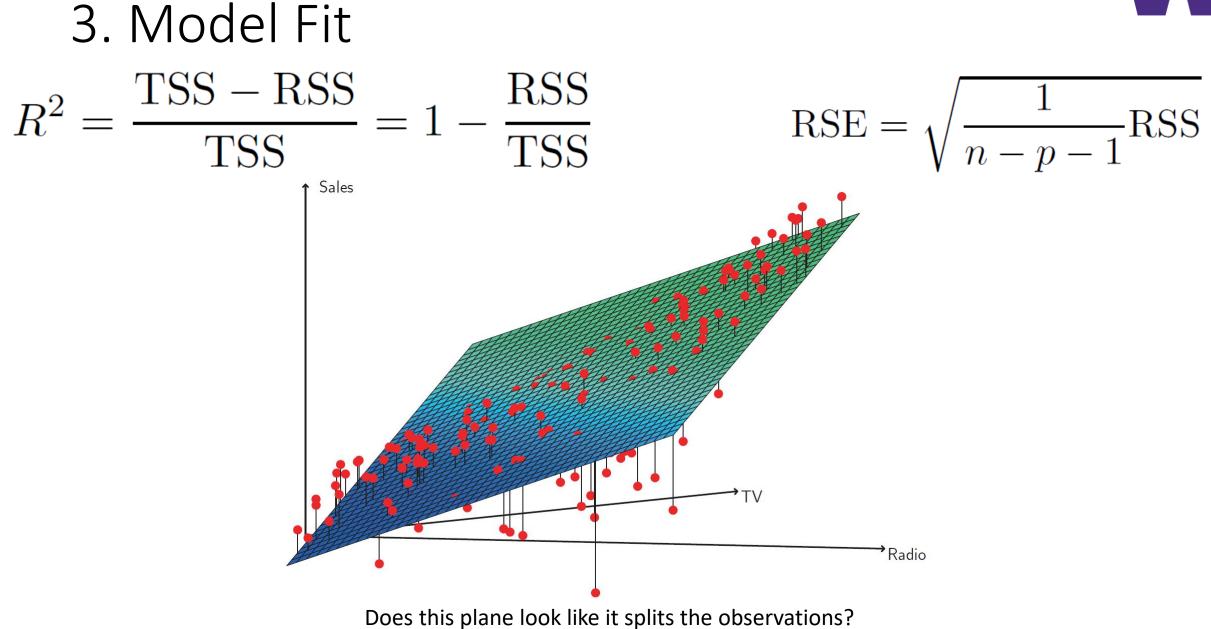
If the null hypothesis is true, this ratio will be one; otherwise this will be larger than 1



W

2. Deciding on Important Variables

- Various statistics can be used to evaluate the quality of the model (e.g. assessing various penalties for complexity): Mallow's Cp, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Adjusted R² [more later]
- Feature Selection
 - Forward Selection: add one variable at a time, choosing the variable that best reduces the RSS
 - Backward Selection: remove one variable at a time, choosing the variable with the largest p value
 - Mixed Selection: use forward selection, but remove any variable that exceeds a threshold p value

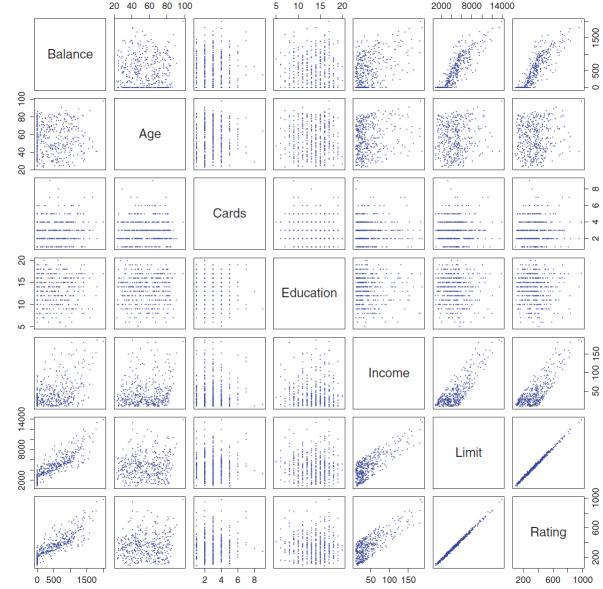


W

4. Predictions

- Three types of uncertainty
 - Confidence interval: for the prediction of the <u>mean</u> output variable [the mean for a particular input vector]
 - Prediction interval: for the prediction of the output variable
 - Model bias: the error caused by choosing a linear model when the true model [which is unknown] does not match the model used

Quantitative Variables for the Credit Data Set



Other Considerations: Qualitative Variables

Example of a Model with a Qualitative Predictor

	Coefficient	Std. error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
gender[Female]	19.73	46.05	0.429	0.6690

- Interpretation: the average Balance for gender=Male is \$509.80, while the average Balance for gender=Female is \$19.73 more
- Note: the p value is not significant

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is male} \end{cases}$$

Alternative Coding Scheme for Dummy Var

$$\begin{aligned} x_i &= \begin{cases} 1 & \text{if } i \text{th person is female} \\ -1 & \text{if } i \text{th person is male} \end{cases} \\ y_i &= \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 - \beta_1 + \epsilon_i & \text{if } i \text{th person is male} \end{cases} \end{aligned}$$

• Interpretation: average overall balance is Beta[0], with Beta[1] added to derive the average Balance for gender=Female and Beta[1] subtracted to derive the average Balance for gender=Male Other Considerations: Qualitative Variables

Qualitative Predictors with More than Two Values

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person is Asian} \\ 0 & \text{if } i \text{th person is not Asian,} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian} \\ 0 & \text{if } i \text{th person is not Caucasian.} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is African American.} \end{cases}$$

Evaluating the Predictors

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

This F-test has a p-value of 0.96, indicating that we cannot reject the null hypothesis that there is no relationship between **balance** and **ethnicity**.

W

Extensions: Interactions

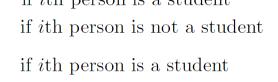
• Add an interaction term

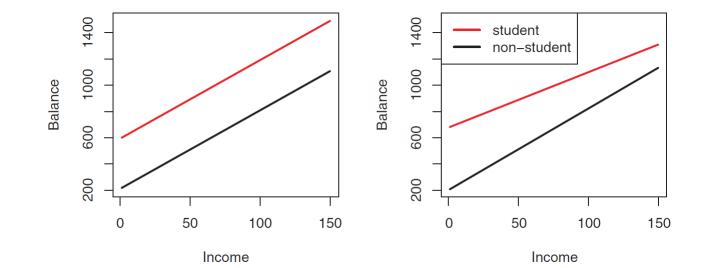
 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon.$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
TV×radio	0.0011	0.000	20.73	< 0.0001

Extensions: Interactions

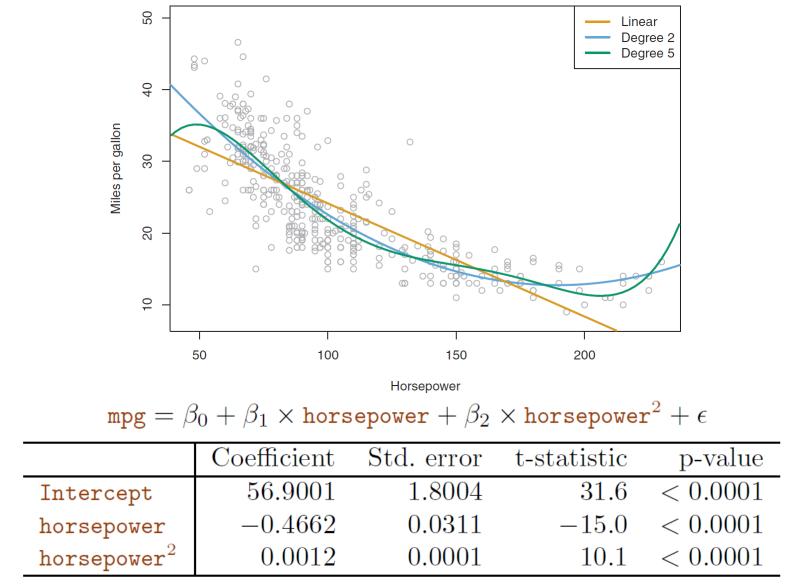
if ith person is a student $\texttt{balance}_i ~\approx~ \beta_0 + \beta_1 \times \texttt{income}_i + \begin{cases} \beta_2 \\ 0 \end{cases}$ $= \beta_1 \times \operatorname{income}_i + \begin{cases} \beta_0 + \beta_2 \\ \beta_0 \end{cases}$ if ith person is a student if ith person is not a student.





$$\begin{aligned} \mathbf{balance}_i &\approx \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ &= \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{aligned}$$

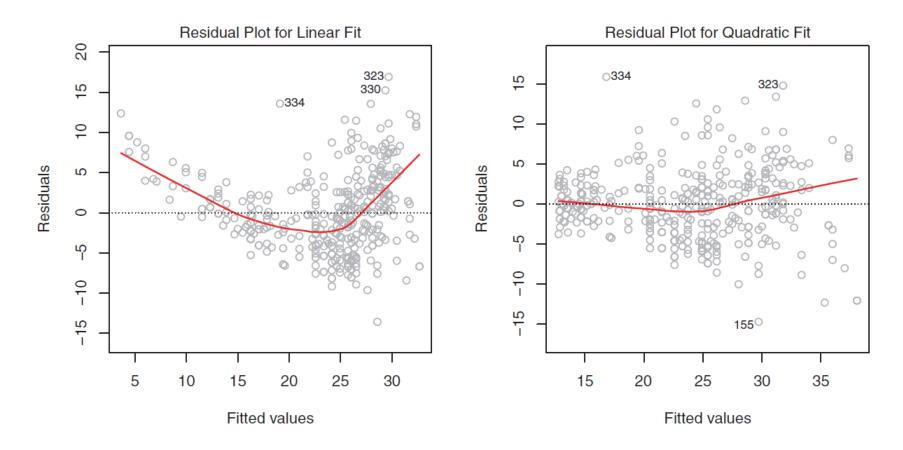
Extensions: Non-Linear Relationships



Polynomial Regression

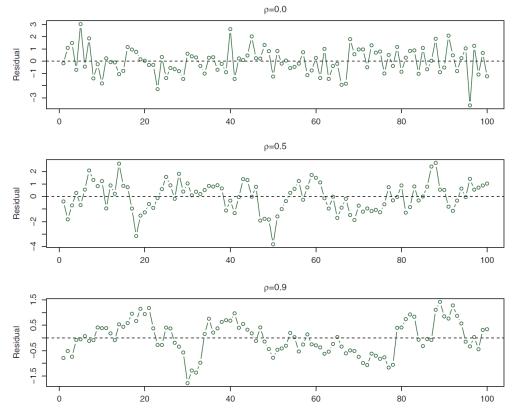
Potential Problem: Non-Linearity of the Data

• Consider transform of predictors; e.g. log(x), sqrt(x), x^2, ...



Problem: Correlation of Error Terms

- Can lead to underestimating the error terms
- May observe "tracking" among the residuals (2nd and 3rd plots)

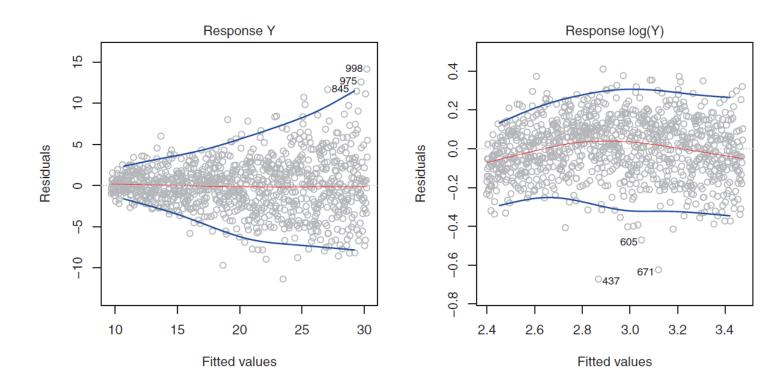


Observation

Potential Problems

Problem: Non-Constant Variance of Error Terms

• Consider transforming the output

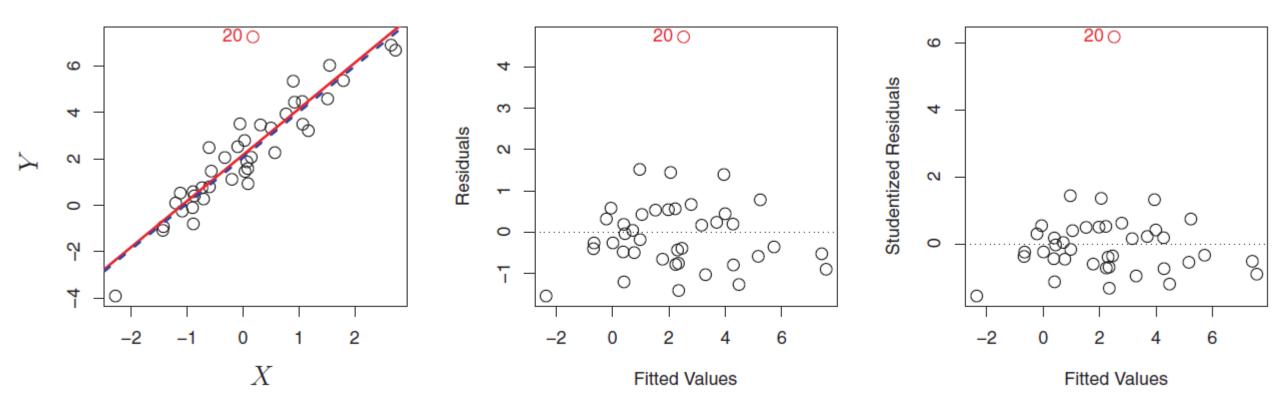


Use weighted least squares when using average output values

Potential Problems

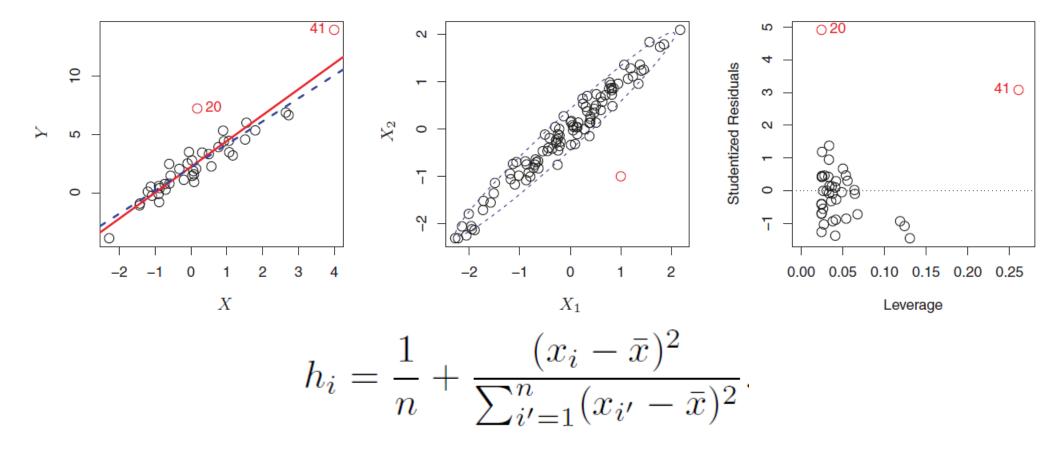
Problem: Outliers

• Unusual output value may increase the RSE and reduce R²



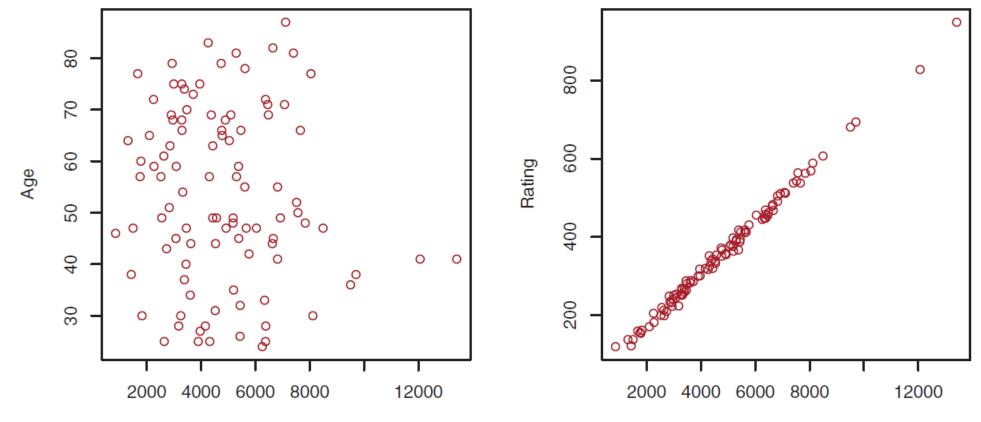
Problem: High Leverage Points

• Unusual input values may modify the model



Problem: Collinearity

 Correlated variables: called multi-collinearity if more than two variables are involved

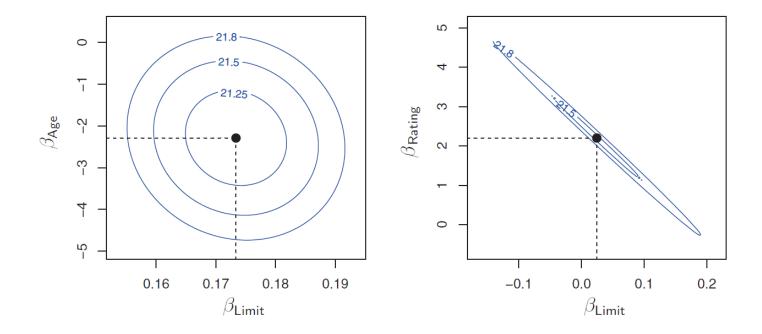


Limit

Limit

Potential Problems

Problem: Collinearity: Example



		Coefficient	Std. error	t-statistic	p-value
Model 1	Intercept	-173.411	43.828	-3.957	< 0.0001
	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	< 0.0001
Model 2	Intercept	-377.537	45.254	-8.343	< 0.0001
	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

Problem: Collinearity: Detecting Collinearity

• Variance Inflation Factor [variable X_i predicted by other variables]

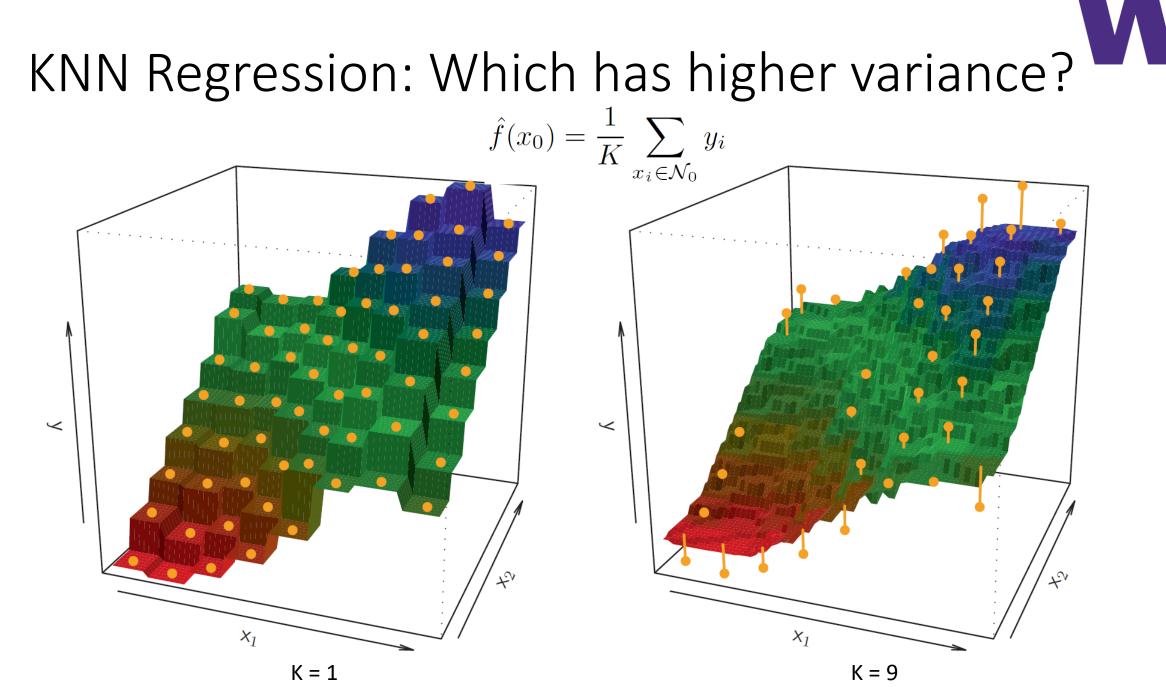
$$\operatorname{VIF}(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

• Large values indicate a collinearity problem

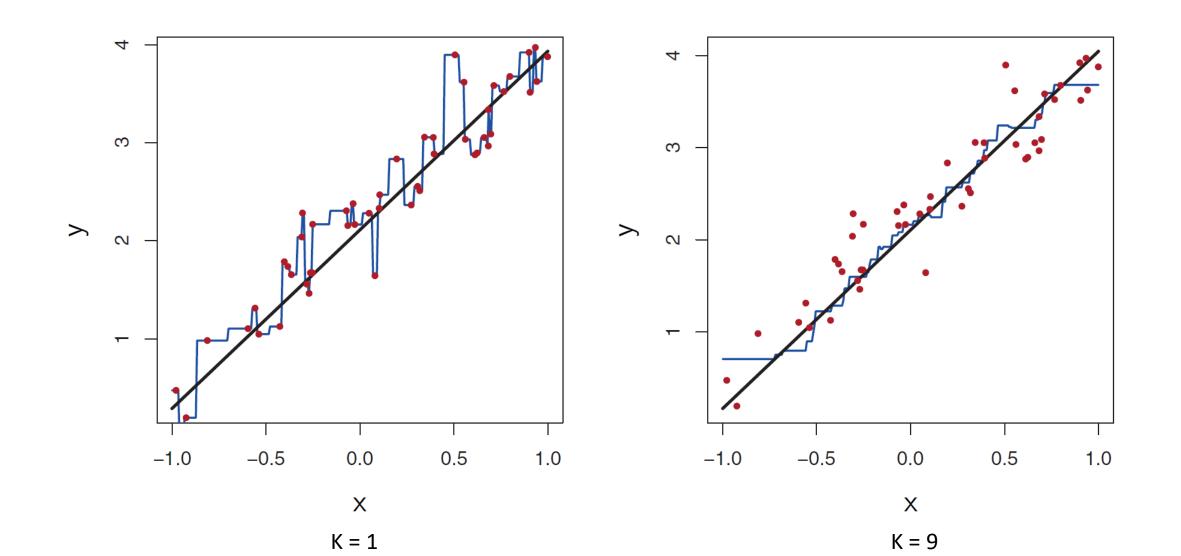
In the Credit data, a regression of balance on age, rating, and limit indicates that the predictors have VIF values of 1.01, 160.67, and 160.59.

Return to Questions for the Advertising Data

- 1. Is there a relationship between advertising sales and budget? F test (RSS)
- 2. How strong is the relationship? RSE; R^2
- 3. Which media contribute to sales? t test (coefficients)
- 4. How large is the effect of each medium on sales? confidence interval (coefs)
- 5. How accurate can we predict future sales? confidence/prediction intervals
- 6. Is the relationship linear? residual plot
- 7. Is there synergy among the advertising media? interactions

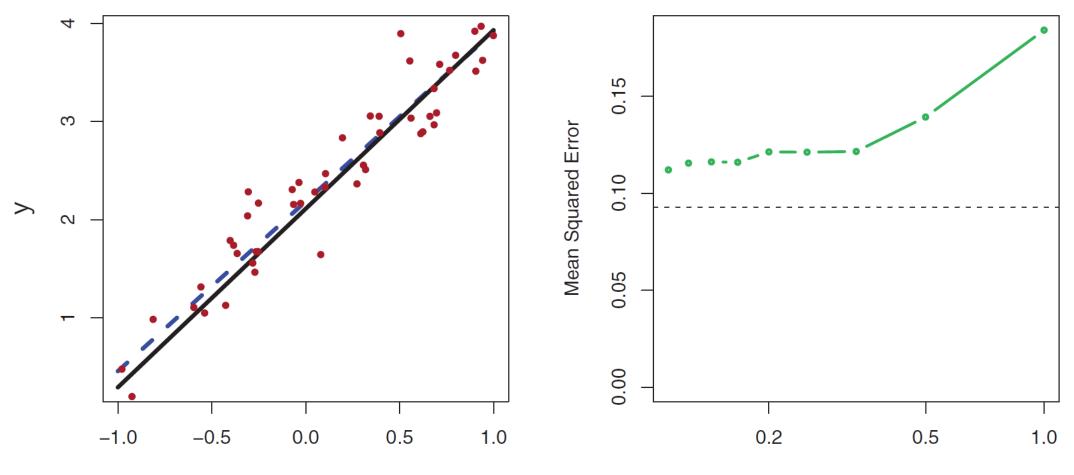


KNN Regression: with Only 1 Predictor



Linear Regression v KNN Regression

Round 1: Linear Regression versus KNN

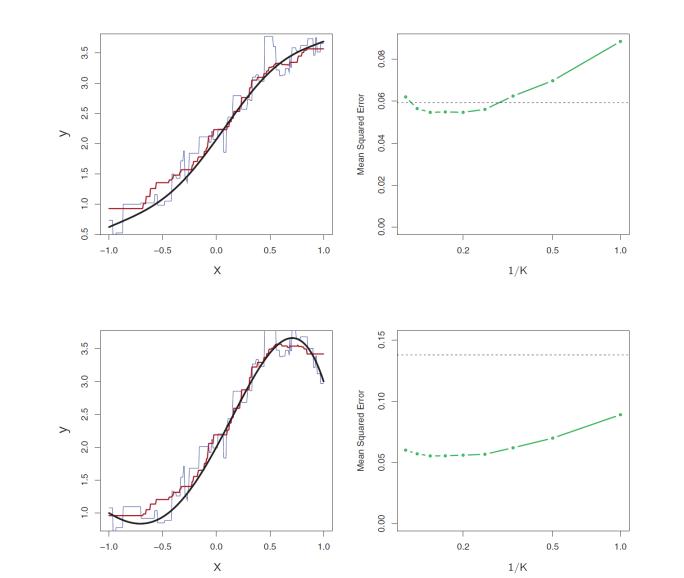


Х

1/K

Linear Regression v KNN Regression

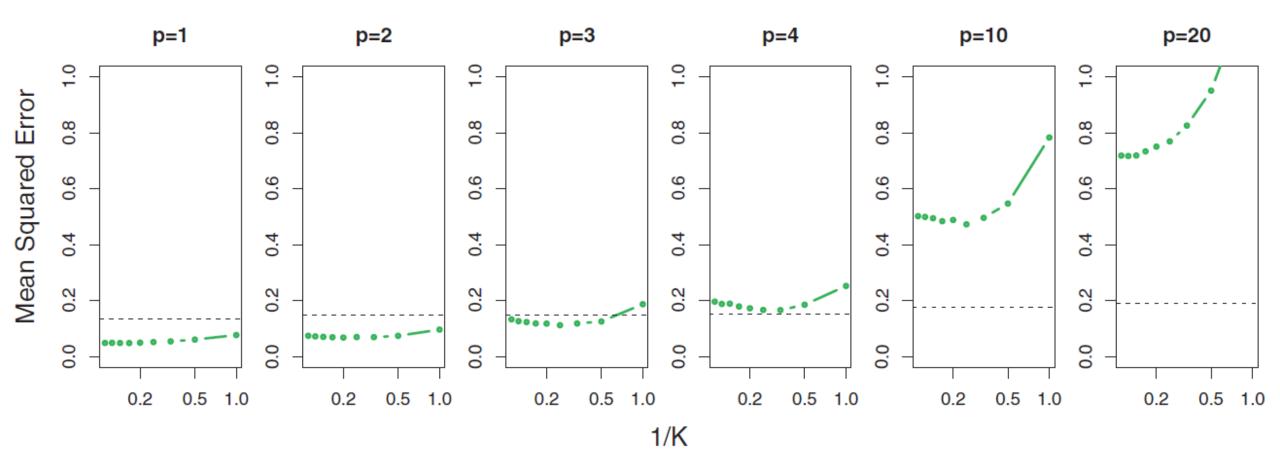
Rounds 2 and 3: Linear Regression v KNN



Higher complexity function

Linear Regression v KNN Regression

Rounds 4 – 8: Linear Regression v KNN



Higher complexity function, but with various quantities of noise

Chain Rule for Gradient Descent

$$-\frac{\partial}{\partial\beta_{i}}\left(\frac{1}{2}\left(y_{i}-\hat{f}(x_{i})\right)^{2}\right)=-\frac{\partial}{\partial\hat{f}(x_{i})}\left(\frac{1}{2}\left(y_{i}-\hat{f}(x_{i})\right)^{2}\right)\frac{\partial\hat{f}(x_{i})}{\partial\beta_{i}}$$

- We want to move the weight in the opposite direction of the partial derivative of the loss function with respect to this weight
- See example code near bottom of http://cross-entropy.net/ML210/linear_regression.txt

Gradient Descent for Regression

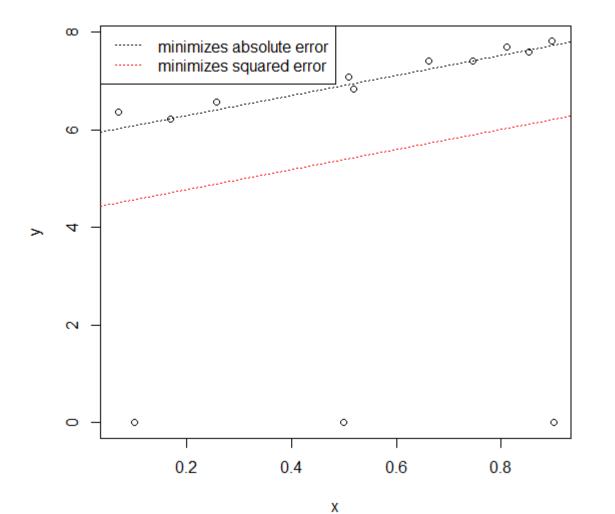
Gradient for Mean Squared Error Loss $-\frac{\partial}{\partial \hat{f}(x_i)} \left(\frac{1}{2} \left(y_i - \hat{f}(x_i) \right)^2 \right) = -\frac{1}{2} \frac{\partial}{\partial \hat{f}(x_i)} \left(\left(y_i - \hat{f}(x_i) \right)^2 \right)$ $= -\frac{1}{2} \left(2 * \left(y_i - \hat{f}(x_i) \right) \right) \frac{\partial}{\partial \hat{f}(x_i)} \left(y_i - \hat{f}(x_i) \right)$ $= -\left(y_i - \hat{f}(x_i)\right) \frac{\partial}{\partial \hat{f}(x_i)} \left(y_i - \hat{f}(x_i)\right)$ $= -\left(y_i - \hat{f}(x_i)\right) * \left(\frac{\partial}{\partial \hat{f}(x_i)}y_i - \frac{\partial}{\partial \hat{f}(x_i)}\hat{f}(x_i)\right)$ $= -(y_i - \hat{f}(x_i)) * (0-1)$ $= y_i - \hat{f}(x_i)$

W

Robust Regression

- •We use Laplacian loss (absolute error) rather than Gaussian loss (squared) error
- •A Linear Programming (LP) solver is used to derive the coefficients for Laplacian loss [constrained optimization]

Robust Regression Example



See example code at bottom of <u>http://cross-entropy.net/ML210/linear_regression.txt</u>

Agenda

ngenaa	3 Linear Regression			59		
		3.1	Simple Linear Regression	61		
			3.1.1 Estimating the Coefficients	61		
			3.1.2 Assessing the Accuracy of the Coefficient			
			Estimates	63		
Homework Review			3.1.3 Assessing the Accuracy of the Model	68		
		3.2	Multiple Linear Regression	71		
Probability			3.2.1 Estimating the Regression Coefficients	72		
			3.2.2 Some Important Questions	75		
Chapter 3		3.3	Other Considerations in the Regression Model	82		
			3.3.1 Qualitative Predictors	82		
			3.3.2 Extensions of the Linear Model	86		
Gradient Descent			3.3.3 Potential Problems	92		
		3.4	The Marketing Plan	102		
Robust Regression		3.5	Comparison of Linear Regression with K -Nearest			
-			Neighbors $\ldots \ldots 10$			
		3.6	Lab: Linear Regression	109		
			3.6.1 Libraries \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	109		
			3.6.2 Simple Linear Regression	110		
			3.6.3 Multiple Linear Regression	113		
			3.6.4 Interaction Terms	115		
			3.6.5 Non-linear Transformations of the Predictors	115		
			3.6.6 Qualitative Predictors	117		
			3.6.7 Writing Functions	119		
		3.7	Exercises	120		