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Administrative Stuff

* Pre-requisites: calculus, linear algebra
* Attendance: must attend 60% of classes

 On-site versus online: on-site students can do one online session
[licensing]

* Homework: all assignments and due dates have been posted
e Only half credit awarded if turned in past due date

* For example: if you turn in a homework assignment late, and you would have
scored 3 out of 3 points if you had turned it in on time, then you will be
awarded 1.5 points

e Grading: must successfully complete 17 out of 28 possible homework
points




Course Outline

1. Introduction to Statistical
_earning

_Linear Regression
Classification
Resampling Methods

A

Linear Model Selection
and Regularization

w

6. Moving Beyond Linearity
7. Tree-Based Methods

8. Support Vector Machines
9. Unsupervised Learning

10.Neural Networks and
Genetic Algorithms



Course Website

Assignments and Discussion
http://canvas.uw.edu/

Recordings
http://uweoconnect.extn.washington.edu/mlearn210/

Notes/Slides
http://cross-entropy.net/ML210
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Contact Info

* Dave DeBarr
e ddebarr@uw.edu
* Phone: (425) 679-2428
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Considerations

 Remember to keep your sense of humor
e Keep up with the work every week

* Ask questions! If you have questions, others probably have the same
que stions! £ W Rpazaon WV ANDEZTOONS COM

“Let’s solve these first. We can worry about
data mining later.”
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Overview of Statistical Learning

Machine Learning Definition

e Using data to create a model to map one-or-more input values to
one-or-more output values

* Interest from many groups
 Computer scientists: “machine learning”
* Statisticians: “statistical learning”
* Engineers: “pattern recognition”



Overview of Statistical Learning
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* E-Commerce: sentiment and trend analysis; dynamic pricing; predict which
ad a user is most likely to click; customer segmentation

Applications

* Editing: spell correct

e Education: recommendations based on student’s aptitude

* Finance: predict whether an applicant will default on loan

* Genomics: predict gene function; personalized medicine

* Government: detect abusive tax avoidance transactions

e Healthcare: image analysis for diagnosis

* Manufacturing: predict when maintenance is needed

 Security: predict whether a transaction is fraudulent; biometrics recognition
* Translation: convert spoken language to another language



Overview of Statistical Learning

Examples of Learning Problems

* Predict whether a patient, hospitalized due to a heart attack, will have a

second heart attack. The prediction is to be based on demographic, diet
and clinical measurements for that patient.

* Predict the price of a stock in 6 months from now, on the basis of company
performance measures and economic data.

* |dentify the numbers in a handwritten ZIP code, from a digitized image.

e Estimate the amount of glucose in the blood of a diabetic person, from the
infrared absorption spectrum of that person’s blood.

* |dentify the risk factors for prostate cancer, based on clinical and
demographic variables.



Overview of Statistical Learning

Wage Data
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Overview of Statistical Learning

Change in Standard & Poor’s Index
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Overview of Statistical Learning

Predicted Probability of Decrease
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Overview of Statistical Learning

Gene Expression Data

* Genes are printed on a glass slide

* A target sample and a reference
sample are labeled with red and
green dyes

* The amount of messenger
ribonucleic acid (mRNA) is measured
for both the target and reference
samples

* The log of the ratio of the two
guantities typically ranges from -6 to
6
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Overview of Statistical Learning

Gene Expression Data
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Notation and Simple Matrix Algebra

Matﬂx NOtat|On authors represent

all vectors as

columns
r11 T12 ... Tip Lil L1
r21 I22 ... T2p L2 L2
X = - . : : Li = : X5 = .
matrix: bold, upper-case X row: lower-case, script x: column: bold, lower-case x:
each cell indexed by row and column values for an observation values for a variable
i is an index for the row jis anindex for the column
p is the number of predictors n is the number of observation

example: 150 x 4 matrix
sepal width, sepal length, petal width, petal length measurements
for 150 flowers

x is used to identify input data



Notation and Simple Matrix Algebra

Output Vector

* An output vector is used for supervised learning
* Numeric output values for regression
* Nominal (categorical) output values for classification

/711
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Y :

Un

y is used to identify output data




Notation and Simple Matrix Algebra

Alternative Names

o X oy

* Input Variable e Output Variable
* Predictor * Response

* Covariate * Target

* Independent * Dependent

* Exogenous * Endogenous



Notation and Simple Matrix Algebra
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Counts

*‘n’ is the number of observations in a data set
(rows of the matrix)

*‘pD’ is the number of predictors in a data set
(columns of the matrix)



Notation and Simple Matrix Algebra

Matrix Transposition

We just swap the row and column indices: new; ; = old; ;

/wll Tio ... xlp\ /51311 XTo1 ... Cl?‘nl\
T21 T22 ... XT2p X122 T22 ... Tn2
x=| " 7 Xt =1 .
\mnl Ln2 ... xn'p/ \mlp L2p .- mfn,p/
/33@:1\
Li2
= | . r; = (xi1 a2 Lip)
\a"ip/



Notation and Simple Matrix Algebra

Alternative Matrix Notation

Xz(X1 Xo - Xp) a’:?
>
\T

T, /

matrix expressed as a set of column vectors, matrix expressed as a set of row vectors,
where each column is a variable where each row is an observation
[the authors are treating an observation

Vector as a column vector]



Notation and Simple Matrix Algebra
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Matrix Multiplication

) el

d
(AB);; = Zkzl ik
AR — 1 2\ /5 6\ [(1Ix542x7 1x6+2x8\ (19 22
- \3 4/)\7 8) \3x544x7 3x6+4x8) \43 50

AeR*'*P BeRPXk AB e R**k

R: a value from the real number line



Notation and Simple Matrix Algebra

Vector Multiplication

Bo X0
g =\ b1 X = (x1>
B X2

BT x = Bo*xg+ Py *x1+ P *xy

[sometimes called a dot product]



Notation and Simple Matrix Algebra
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Terminology Note

e Scalar: a single numeric value
*Vector: a 1-dimensional array of values

* Matrix: a 2-dimensional array of values

* Tensor: an array of values with 3 or more dimensions
[e.g. an array of images]



Organization of the Book
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Organization of the Book

e Statistical Learning Terminology and Concepts, plus ‘k’ nearest neighbor
* Regression: Linear Regression

* Classification: Logistic Regression and Linear Discriminant Analysis

* Resampling: Cross Validation and the Bootstrap

* Regression Revisited: Stepwise Selection, Ridge Regression, Principal
Components Regression, Partial Least Squares, and the LASSO

* Non-Linear Regression
* Tree-Based Classification: Bagging, Boosting, and Random Forests
e Support Vector Machines

* Unsupervised Learning: Principal Component Analysis, k-Means Clustering,
and Hierarchical Clustering



Data Sets Used in Labs and Exercises

Data Sets Referenced by the Textbook

Name Description

Auto Gas mileage, horsepower, and other information for cars.
Boston Housing values and other information about Boston suburbs.
Caravan Information about individuals offered caravan insurance.
Carseats Information about car seat sales in 400 stores.

College Demographic characteristics, tuition, and more for USA colleges.
Default Customer default records for a credit card company.

Hitters Records and salaries for baseball players.

Khan Gene expression measurements for four cancer types.

NCI60 Gene expression measurements for 64 cancer cell lines.

0J Sales information for Citrus Hill and Minute Maid orange juice.
Portfolio Past values of financial assets, for use in portfolio allocation.
Smarket Daily percentage returns for S&P 500 over a 5-year period.
USArrests  Crime statistics per 100,000 residents in 50 states of USA.

Wage Income survey data for males in central Atlantic region of USA.

Weekly 1,089 weekly stock market returns for 21 years.




What is Statistical Learning?
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What is Statistical Learning?

Our First Equation

Y =f(X)+e€
* Y is an output Sales value

 f(X) is a function of TV budget
¢ f(X)=0.05*X+7
* Slope: (22 - 7) / (300 - @) = 0.05
e Intercept: 22 - 0.05 * 300 = 7
«f( ©) = 0.05 * O + 7 = 7
« £(100) = 0.05 100 /7 = 12

Sales

- £(300) = 0.05 * 300 + 7 = 22

* + ol
- £(200) = 0.05 * 200 + 7 = 17 o &
* + i
* € is a residual “error” term (Greek letter “epsilon”) .

Data = read.csv("http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv") v

200

300


http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv

What is Statistical Learning?

Income as a Function of Education
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What is Statistical Learning?

Income as a Function of Education and
Seniority




What is Statistical Learning?

Why Estimate f(X)?

w

Y =7(X)
* The hats (circumflex characters: ‘') indicate we’re talking about
estimates rather than some notion of absolute truth

* £(X) is the function we learned from data: our function is a model
that maps an input to an output

e Y is our prediction

* Reasons:
* To predict an outcome
* To understand the influence of the predictors on the outcome



What is Statistical Learning?
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* Aloss function measures how well a model is able to map inputs to outputs

- E(Y - Y)z =E|f(X) +€— f(X)]2 = E[f(X) — f(X)]2 + Var(e)

o E [f(X) — ]?(X)]2 is referred to as reducible error: we could reduce the
error if we had better features

Prediction [Our First Loss Function: Squared Error]

* Var(e) is referred to as irreducible error, because we believe the process is
stochastic rather than deterministic

« E( ) indicates we’re talking about an expected value (average value)

* Var( ) indicates we’re talking about variance, the expected squared
deviation from the mean

» Since we believe our residual error has a mean of zero E(€?) = Var(e)



What is Statistical Learning?

Inference [Understanding]

* Which predictors are associated with the response?

 What is the relationship between the response and each predictor?

* Can the relationship between the inputs and outputs be summarized
adequately using a linear model, or is the relationship more complex?

* Examples:
* Which media contribute to sales?
 Which media generate the biggest boost in sales?

* How much increase in sales is associated with a given increase in TV
advertising?



What is Statistical Learning?

How Do We Estimate f?

* Parametric methods: the size of the model is fixed; e.g. linear

regression, polynomial regression, logistic regression, neural network

* Non-Parametric methods: the size of the model can grow with the
amount of training data; e.g. nearest neighbor, random forests,
gradient boosting, support vector machines



What is Statistical Learning?

Parametric Linear Model for Income
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What is Statistical Learning?

Non-Parametric Non-Linear Model for Incom

TS




What is Statistical Learning?

Trade-Off Between Prediction Accuracy and
Model Interpretability

S _| Subset Selection
T Lasso
Least Squares
=
E Generalized Additive Models
o Trees
—
Q
=
Bagging, Boosting
> Support Vector Machines
3
| |
Low High

Flexibility



What is Statistical Learning?

Supervised versus Unsupervised Learning

* Supervised Learning

* The learning algorithm is given a target output variable
 Classification: the output variable is nominal (categorical, qualitative)
* Regression: the output variable is numeric (quantitative)

* Unsupervised Learning

* The learning algorithm is *not™* given a target output variable
e Clustering
* Principal Component Analysis



What is Statistical Learning?

Unsupervised Learning and Class Overlap
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Assessing Model Accuracy

Measuring the Quality of the Model

Common Loss functions

* Regression
* Gaussian loss (mean squared error)
* Laplacian loss (mean absolute error)
* Classification
* Log loss
* Hinge loss

MSFE = l Z(yz — f(a’/'z))Q AVG(’!JO — f(l’o))2



Example: High Bias (underfitting) versus Hing
Variance (overfitting)

Overfitting: the region of flexibility where the loss increases for the testing data but decreases for the training data
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Assessing Model Accuracy

Example: Overfitting
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Assessing Model Accuracy

Bias versus Variance Trade-Off

20

10

Mean Squared Error
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X Flexibility



Assessing Model Accuracy
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Bias Variance Decomposition

~ 2 R 2 . 2
E(vo = FG0) = E(f0) + = Fx0)) = E(f0x) = f0x)) + Var(e)
= B(fG) — E (F () + B (f00)) = FGx)) + Var(e)
= B[ (Feo) — B (7)) + 2% (Fxo) — B (7)) = (B (FCxw)) — £ + (E (FCx)) - f<xo))2> + Var(e)
2 ~

= E(f o)~ E (7)) +0+E(E (fx) ~ Fxo)) +Var(e)
= lBiaS (f(xo))lz + Var (f(xo)) +Var(e)

* We're adding and subtracting the same value (zero) on line 2

* We're grouping pairs of terms and multiplying on line 3

« We're using E (E (f(xo)) — f(xo)) = O on line 4



Assessing Model Accuracy

Optimal Flexibility Varies by Problem
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Assessing Model Accuracy
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Classification Error

] « )
- Z I(y; # 0;)
1 1=1

[() is an indicator function which returns 1 iff (if and only if) the condition
is true; e.g. the actual class label is not equal to the predicted class label

Ave (I(yo # 9o0))



Assessing Model Accuracy
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Bayes Classifier

The Bayes classifier picks the class ‘j’ that maximizes the probability

PI(Y — j‘X — ZCQ)

Read “probability that Y is equal to j given that X is equal to x,“

The Bayes error rate is

J

| —E (maxPr(Y = jX))



Assessing Model Accuracy
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Bayes Classifier for Simulated Problem
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Assessing Model Accuracy

K Nearest Neighbors

. 1 .
Pr(Y = jlX = z0) = - > I(yi =)
i€No

where N, is the set of indices for the 'K’ nearest neighbors of x,

For classification using K nearest neighbors, we’re estimating the proportion
of nearest neighbors that belong to class j’



Assessing Model Accuracy
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K Nearest Neighbor Classifier Example (k=3)




Assessing Model Accuracy

KNN with K=10 versus Bayes Decision
Boundary

w

KNN: K=10




Assessing Model Accuracy

KNN with K=1 versus K=10

KNN: K=1 KNN: K=100




Assessing Model Accuracy

Error versus Complexity for KNN
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What’s Left to Talk About?

e Lab

* |nstall R from https://cran.r-project.org/
e Execute the commands from the Lab in Section 2.3 of the textbook

e Use the following R command to install the “ISLR” package:

install.packages(“ISLR”)
# choose “USA (WA) [https]” for the mirror

* Homework
e Submit your response for Assignment #1 to the http://canvas.uw.edu site

a. Please include a brief note about ...
1. your education

2. vyour current job
3. how you would like to use knowledge acquired through this certificate program

Answer question #2 from the exercises in Section 2.4 (page 52)
Answer question #9 from the exercises in Section 2.4 (page 56)
d. https://kaggle.com/join/mI210 mnist

O O



https://cran.r-project.org/
http://canvas.uw.edu/
https://kaggle.com/join/ml210_mnist

KNN Example

> set.seed (2717 -

> start.time = Sys.tlmg()

>

> trn X = read.csv("C: /Data/mnlst/trn X.csv", header = F)

> trn_y = gscan("C:/Data/mnist/trn y.txt”)

Read 60000 items B

> tst X = read.csv("C:/Data/mnist/tst X.csv", header = F) 6
g _ _

> rotate = function(X) t(apply (X, 2, rev))

> windows (height = 3, width = 3)

> 1 = sample.int (nrow(trn X), size = 1)

> image (rotate (matrix (as.numeric(trn X[i,]), nrow = 28, byrow =

+ col = gray.colors (256, 0, 1),

+ main = trn y[i1i], axes = F)

>

> library(class)

> subset = sample(l:nrow(trn X), 0.25 * nrow(trn X))

> predictions = knn(trn_X[suEset,], tst X, facto;(trn_y[subset]), k = 1)

> output = data.frame(Id = l:length(predictions), Prediction = predictions)
> write.csv (output, "C:/Data/mnist/predictions.csv", quote=F, row.names = F)
> Sys.time () - start.time

Time difference of 14.55124 mins
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