Distance to the Decision Boundary

Suppose we have the following classification model:

$$
y_{i}= \begin{cases}+1 & \text { if } x_{i}^{T} \beta>0 \\ -1 & \text { otherwise }\end{cases}
$$

This note illustrates why the distance from x_{i} to the decision boundary is given by $\frac{\left|x_{i}{ }^{T} \beta\right|}{\|\beta\|}$ where $\|\beta\|=\sqrt{\beta^{T} \beta}$.
Suppose we're working in two dimensions and we want to know the distance of $x_{i}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ to the decision boundary defined by $\beta=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. In the graph below, β is shown as the solid black arrow (pointing in the direction of the positive class) and x_{i} is shown as the blue arrow. The decision boundary is defined by values of x_{i} where $x_{i}^{T} \beta==0$, so we're looking for vectors along the line $x_{i, 2}=-x_{i, 1}$; e.g. $s=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$ (shown as the dotted black arrow in the graph).

The distance from x_{i} to the decision boundary is given by the distance of x_{i} to the orthogonal projection of x_{i} onto s :

$$
v=\frac{x_{i}{ }^{T} s}{\|s\|} \frac{s}{\|s\|}
$$

v is shown as the solid red arrow in the graph below. The cosine of the angle between v and x_{i} is $\frac{\|v\|}{\left\|x_{i}\right\|}=\frac{x_{i}{ }^{T} s}{\left\|x_{i}\right\|\|s\|}$, so v is simply a scaled version of $\frac{s}{\|s\|}$.

The length of $d_{1}=x_{i}-v$ is the distance of x_{i} to the decision boundary. This is shown by the solid green arrow in the graph below.
By symmetry, the length of d_{1} is the same as the length of the projection of x_{i} onto $\beta: d_{2}=\frac{x_{i}{ }^{T} \beta}{\|\beta\|} \frac{\beta}{\|\beta\|}$
d_{2} is shown as the dotted green arrow in the graph below.
Since d_{2} is simply a scaled version of a unit length version of β, the length of d_{2} is given by $\left\|d_{2}\right\|=\frac{\left|x^{T} \beta\right|}{\|\beta\|}$ Notes: $\beta^{T} \beta==\|\beta\|^{2}$; distance must be non-negative; and we get the same v if we choose $s=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.

\# R code for the graph
windows(6, 6)
library (MASS)
beta $=c(1,1)$
$s=c(-2,2)$
$x=c(1,3)$
$\mathrm{v}=((\mathrm{t}(\mathrm{x}) \% * \% \mathrm{~s}) /(\mathrm{t}(\mathrm{s}) \% * \% \mathrm{~s}))^{*} \mathrm{~s}$
$\mathrm{d} 1=\mathrm{x}-\mathrm{v}$
$\mathrm{d} 2=((\mathrm{t}(\mathrm{x}) \% * \%$ beta) / (t(beta) \%*\% beta)) * beta
eqscplot $(c(-2.5,2.5), c(-0.5,3.5)$, typ $=" n ")$
arrows (0, 0, s[1], s[2], col = "black", lty = "dotted")
$\operatorname{arrows}(0,0, v[1], v[2], \operatorname{col}=$ "red")
arrows $(x[1], x[2], ~ v[1], ~ v[2], ~ c o l ~=~ " g r e e n 3 ") ~$
arrows (0, 0, d2[1], d2[2], col = "green3", lty = "dotted")
arrows ($0,0, x[1], x[2], \operatorname{col}=$ "blue")
arrows (0, 0, beta[1], beta[2], col = "black")
text(-1.6, 1.4, "s", col = "black")
text(-0.6, 0.4, "v", col = "red")
text(0.6, 1.4, expression(x[i]), col = "blue")
text(0.6, 0.4, expression(beta), col = "black")
text(-0.1, 2.1, expression(d[1]), col = "green3")
text(1.6, 1.4, expression(d[2]), col = "green3")

