

## Classification

ddebarr@uw.edu

2017-01-26

"All models are wrong, but some are useful" – George Box

#### Course Outline

- 1. Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Resampling Methods
- 5. Linear Model Selection and Regularization

- 6. Moving Beyond Linearity
- 7. Tree-Based Methods
- 8. Support Vector Machines
- 9. Unsupervised Learning
- 10.Neural Networks and Genetic Algorithms

|                 | 4 Classification                                                    | 127                               |
|-----------------|---------------------------------------------------------------------|-----------------------------------|
|                 | 4.1 An Overview of Classification                                   |                                   |
| Agonda          | 4.2 Why Not Linear Regression?                                      |                                   |
| Agenua          | 4.3 Logistic Regression                                             | 130                               |
|                 | 4.3.1 The Logistic Model $\ldots$ $\ldots$ $\ldots$                 | 131                               |
|                 | 4.3.2 Estimating the Regression Coefficients                        | 133                               |
|                 | 4.3.3 Making Predictions                                            | 134                               |
| Homework Review | 4.3.4 Multiple Logistic Regression                                  | 135                               |
|                 | 4.3.5 Logistic Regression for $>2$ Response C                       | $Ulasses \dots \dots 137$         |
| Chapter 4       | 4.4 Linear Discriminant Analysis                                    | 138                               |
|                 | 4.4.1 Using Bayes' Theorem for Classification                       | on 138                            |
|                 | 4.4.2 Linear Discriminant Analysis for $p = 1$                      | l                                 |
|                 | 4.4.3 Linear Discriminant Analysis for $p > 1$                      | · · · · · · · · 142               |
|                 | 4.4.4 Quadratic Discriminant Analysis                               |                                   |
|                 | 4.5 A Comparison of Classification Methods                          | 1.151                             |
|                 | 4.6 Lab: Logistic Regression, LDA, QDA, and KN                      | NN 154                            |
|                 | 4.6.1 The Stock Market Data                                         | $\ldots \ldots \ldots \ldots 154$ |
|                 | 4.6.2 Logistic Regression                                           | 156                               |
|                 | 4.6.3 Linear Discriminant Analysis                                  | 161                               |
|                 | 4.6.4 Quadratic Discriminant Analysis                               | · · · · · · · · 163               |
|                 | 4.6.5 K-Nearest Neighbors $\ldots$                                  | 163                               |
|                 | 4.6.6 An Application to Caravan Insurance                           | Data 165                          |
|                 | 4.7 Exercises $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ |                                   |

## W

#### Classification Examples

- Given a set of symptoms, diagnose medical condition: { Stroke, Drug Overdose, Epileptic Seizure }
- Determine whether an online transaction is fraudulent
- Determine which DNA mutations are associated with a disease

An Overview of Classification



Yes

### Default Data Set



Why Not Linear Regression?



#### Linear versus Logistic Regression





## The Logistic Regression Model

$$\log\left(\frac{\Pr(Y=1 \mid x_i)}{1 - \Pr(Y=1 \mid x_i)}\right)$$

 $\Pr(Y$ 

logistic function: 
$$\frac{1}{1 + \exp(-x_i^T \boldsymbol{\beta})}$$

$$\log\left(\frac{\Pr(Y=1|x)}{1-\Pr(Y=1|x)}\right) = x^{T}\beta$$

$$\frac{\Pr(Y=1|x)}{1-\Pr(Y=1|x)} = \exp(x^{T}\beta)$$

$$\Pr(Y=1|x) = \exp(x^{T}\beta)(1-\Pr(Y=1|x))$$

$$\Pr(Y=1|x) = \exp(x^{T}\beta) - \exp(x^{T}\beta)\Pr(Y=1|x)$$

$$= 1|x) + \exp(x^{T}\beta)\Pr(Y=1|x) = \exp(x^{T}\beta)$$

$$\Pr(Y=1|x)(1+\exp(x^{T}\beta)) = \exp(x^{T}\beta)$$

$$\Pr(Y=1|x) = \frac{\exp(x^{T}\beta)}{1+\exp(x^{T}\beta)}$$

$$\Pr(Y=1|x) = \frac{\exp(x^{T}\beta)}{\frac{1}{\exp(x^{T}\beta)} + \frac{\exp(x^{T}\beta)}{\exp(x^{T}\beta)}}$$

$$\Pr(Y=1|x) = \frac{1}{1+\exp(-x^{T}\beta)}$$

 $y_i = \{-$ 

## W

#### Log Loss Function

We want to maximize the likelihood function ...

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

... which is the same as minimizing the log loss ...

$$-\log\left(\Pr(y_i^*=1 \mid x_i; \boldsymbol{\beta}) = -\log\left(\left(\frac{1}{1 + \exp\left(-x_i^T \boldsymbol{\beta}\right)}\right)^{y_i^*} \left(1 - \frac{1}{1 + \exp\left(-x_i^T \boldsymbol{\beta}\right)}\right)^{(1-y_i^*)}\right)$$
$$= -\log\left(\frac{1}{1 + \exp\left(-y_i x_i^T \boldsymbol{\beta}\right)}\right)$$
$$= \log\left(1 + \exp\left(-y_i x_i^T \boldsymbol{\beta}\right)\right)$$
$$-1, +1\} \qquad y_i^* = \frac{y_i + 1}{2}$$

#### Model for Default: Simple Logistic Regression

Example of Simple Logistic Regression (only one predictor):

|           | Coefficient | Std. error | Z-statistic | P-value  |
|-----------|-------------|------------|-------------|----------|
| Intercept | -10.6513    | 0.3612     | -29.5       | < 0.0001 |
| balance   | 0.0055      | 0.0002     | 24.9        | < 0.0001 |

Example of a prediction:

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576$$



### Model for Default: Simple Logistic Regression

#### Model:

|                         | Coefficient | Std. error | Z-statistic | P-value  |
|-------------------------|-------------|------------|-------------|----------|
| Intercept               | -3.5041     | 0.0707     | -49.55      | < 0.0001 |
| <pre>student[Yes]</pre> | 0.4049      | 0.1150     | 3.52        | 0.0004   |

 $\begin{aligned} & \widehat{\Pr}(\texttt{default}=\texttt{Yes}|\texttt{student}=\texttt{Yes}) = \frac{e^{-3.5041+0.4049\times 1}}{1+e^{-3.5041+0.4049\times 1}} = 0.0431 \\ & \widehat{\Pr}(\texttt{default}=\texttt{Yes}|\texttt{student}=\texttt{No}) = \frac{e^{-3.5041+0.4049\times 0}}{1+e^{-3.5041+0.4049\times 0}} = 0.0292 \end{aligned}$ 

Logistic Regression

# Model for Default: Multiple Logistic Regression

#### Model:

|                         | Coefficient | Std. error | Z-statistic | P-value  |
|-------------------------|-------------|------------|-------------|----------|
| Intercept               | -10.8690    | 0.4923     | -22.08      | < 0.0001 |
| balance                 | 0.0057      | 0.0002     | 24.74       | < 0.0001 |
| income                  | 0.0030      | 0.0082     | 0.37        | 0.7115   |
| <pre>student[Yes]</pre> | -0.6468     | 0.2362     | -2.74       | 0.0062   |

#### **Predictions:**

 $\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058$  $\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}} = 0.105$ 

Logistic Regression



#### Confounding in the Default Data



In Table 4.2 of your book, we see that the coefficient for the student variable is positive (adds 0.4049 to the log odds); but in Table 4.3, we see that the coefficient for the student variable is negative (subtracts 0.6468 from the log odds). The left-hand side of Figure 4.3 shows students have a higher default rate [the dashed lines]; but for a fixed balance, students tend to have a lower default rate [the solid lines]. The right-hand side shows that students tend to have higher balances.



#### Iteratively Reweighted Least Squares

mydata = read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
model = glm(admit ~ ., data = mydata, family = binomial)
model\$coefficients

X = as.matrix(cbind(rep(1, nrow(mydata)), mydata[,2:ncol(mydata)]))

y = mydata\$admit

# logistic regression using Iteratively Reweighted Least Squares (IRLS)

```
beta = as.vector(array(0, ncol(X)))
```

for (i in 1:25) {

```
predictions = 1 / (1 + exp(- (X \% \% beta)))
```

```
gradient = t(X) %*% (predictions - y)
```

```
Hessian = t(X) %*% diag(as.vector(predictions * (1 - predictions))) %*% X
```

```
beta = beta - solve(Hessian, diag(ncol(X))) %*% gradient
```

}

beta

```
See example code at <u>http://cross-entropy.net/ML210/logistic_regression.txt</u>
```

Logistic Regression

See example code at bottom of <u>http://cross-entropy.net/ML210/logistic\_regression.txt</u> Gradient Descent for Log Loss  $-\frac{\partial}{\partial f(x_i)}\log\left(1+\exp\left(-y_i\hat{f}(x_i)\right)\right) = -\frac{1}{1+\exp\left(-y_i\hat{f}(x_i)\right)}\left(\frac{\partial}{\partial \hat{f}(x_i)}1+\frac{\partial}{\partial \hat{f}(x_i)}\exp\left(-y_i\hat{f}(x_i)\right)\right)$  $= -\frac{1}{1 + \exp\left(-y_{i}\hat{f}(x_{i})\right)} \left(0 + \exp\left(-y_{i}\hat{f}(x_{i})\right)\frac{\partial}{\partial\hat{f}(x_{i})}\left(-y_{i}\hat{f}(x_{i})\right)\right)$  $= -\frac{1}{1 + \exp\left(-y_i \hat{f}(x_i)\right)} \left(0 + \exp\left(-y_i \hat{f}(x_i)\right)(-y_i)\right)$  $= y_i \frac{\exp\left(-y_i \hat{f}(x_i)\right)}{1 + \exp\left(-y_i \hat{f}(x_i)\right)}$  $= y_i \frac{1}{1 + \exp\left(y_i \hat{f}(x_i)\right)}$  $= y_i \left( 1 - \frac{1}{1 + \exp\left(-y_i \hat{f}(x_i)\right)} \right)$  $= y_i^* - \frac{1}{1 + \exp(-\hat{f}(x_i))}$ 

 $y_i = \{-1, +1\}$ 

 $y_i^* = \frac{y_i + 1}{1}$ 



### Logistic Regression for > 2 Response Classes

- Construct K-1 models for K response classes
- For the diagnosis problem { stroke, drug overdose, epileptic seizure } ...

 $\Pr(Y = \texttt{stroke}|X)$ 

 $\Pr(Y = \operatorname{drug} \operatorname{overdose} | X)$ 

 $1 - \Pr(Y = \texttt{stroke}|X) - \Pr(Y = \texttt{drug overdose}|X)$ 



## Why Cover More Than Logistic Regression?

- Estimates for the regression coefficients are "surprisingly" unstable when the classes are well separated
- If 'n' is small and the distribution of predictors is approximately Gaussian, the linear discriminant model is more stable
- Linear Discriminant Analysis (LDA) is popular when we have more than two classes



#### Using Bayes Theorem for Classification

# Posterior = $\frac{Prior * Likelihood}{Evidence}$

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$



### Linear Discriminant Analysis (LDA) for p=1

 The term "discriminant" is just another name for a classifier; however, the term "Linear Discriminant Analysis" refers to the use of a Gaussian density function for estimating likelihood values

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

The Linear Discriminant Analysis model is considered to be a <u>generative</u> classifier because it uses p(x | y) to estimate p(y | x), while the Logistic Regression model is considered to be a <u>discriminative</u> classifier because it does not use p(x | y) to estimate p(y | x)

## W

#### Linear Discriminant Analysis

# For p=1, the posterior probability is computed as follows $p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$ $\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}$$

decision boundary for a binary classifier \*iff\* the priors are equal



#### Theory versus Practice



**Bayes Classifier** 

Classifier Based on Sample Data



#### Linear Discriminant Analysis for p=1

#### Parameter Estimates for Each Class:



#### Multivariate Gaussian Distribution Examples



Correlation = 0.7

Linear Discriminant Analysis



#### LDA with k=3 (classes) and p=2 (predictors)







#### Linear Discriminant Analysis with p > 1

$$f(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \mathbf{\Sigma}^{-1}(x-\mu)\right)$$
$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

decision boundary for a binary classifier \*iff\* their priors are equal ...

$$x^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k = x^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_l - \frac{1}{2} \boldsymbol{\mu}_l^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_l$$



#### Example Confusion Matrices for LDA

|                                 |                   |       | True  | default | t status    |
|---------------------------------|-------------------|-------|-------|---------|-------------|
| Classification threshold        |                   |       | No    | Yes     | Total       |
| Pr(Default = Yes   X = x) > 0.5 | Predicted         | No    | 9,644 | 252     | 9,896       |
|                                 | $default\ status$ | Yes   | 23    | 81      | 104         |
|                                 |                   | Total | 9,667 | 333     | 10,000      |
|                                 |                   |       |       |         |             |
|                                 |                   |       | True  | default | $t\ status$ |
| Classification threshold        |                   |       | No    | Yes     | Total       |
| Pr(Default = Yes   X = x) > 0.2 | Predicted         | No    | 9,432 | 138     | 9,570       |
|                                 | $default\ status$ | Yes   | 235   | 195     | 430         |
|                                 |                   | Total | 9,667 | 333     | 10,000      |

#### Error Rate as a Function of Threshold for LDA



- Solid black line: overall error rate
- Dotted red line: error rate for non-defaulting customers
- Dashed blue lines: error rate for defaulting customers

**Classification Model Evaluation** 

#### Receiver Operating Characteristic (ROC) Curve for LDA

#### 1.0 0.8 True positive rate 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Area Under the Curve = 0.95

False positive rate

**ROC Curve** 

**Classification Model Evaluation** 

### Notional Confusion Matrix for Binary Classification

Note: as shown below, I more commonly see the true class along the rows [suggestion: stick with the same format]

|       |               | Predicte         | ed class        |       |
|-------|---------------|------------------|-----------------|-------|
|       |               | – or Null        | + or Non-null   | Total |
| True  | – or Null     | True Neg. $(TN)$ | False Pos. (FP) | Ν     |
| class | + or Non-null | False Neg. (FN)  | True Pos. (TP)  | Р     |
|       | Total         | $\mathrm{N}^*$   | $\mathbf{P}^*$  |       |



#### **Common Classification Metrics**

| Name             | Definition | Synonyms                                    |
|------------------|------------|---------------------------------------------|
| False Pos. rate  | FP/N       | Type I error, 1–Specificity                 |
| True Pos. rate   | TP/P       | 1–Type II error, power, sensitivity, recall |
| Pos. Pred. value | $TP/P^*$   | Precision, 1-false discovery proportion     |
| Neg. Pred. value | $TN/N^*$   |                                             |

When reporting metrics for a classification problem with more than two classes, either macro (unweighted) averages can be used or micro (weighted) averages can be used



### Quadratic Disciminant Analysis (QDA)

- QDA versus LDA
  - for LDA, a single covariance matrix is used for all classes
  - for QDA, a covariance matrix is estimated for each class [this allows for a nonlinear boundary]

$$\delta_k(x) = -\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) - \frac{1}{2}\log|\Sigma_k| + \log \pi_k$$
  
=  $-\frac{1}{2}x^T \Sigma_k^{-1}x + x^T \Sigma_k^{-1}\mu_k - \frac{1}{2}\mu_k^T \Sigma_k^{-1}\mu_k - \frac{1}{2}\log|\Sigma_k| + \log \pi_k$ 



#### Bayes versus LDA versus QDA



#### QDA is better

Dashed red line: Bayes (optimal) decision boundary Dotted black line: LDA decision boundary Solid green line: QDA decision boundary



#### Comparison of Classification Methods



|                    | 4 Cla | ssification                                                | 127 |
|--------------------|-------|------------------------------------------------------------|-----|
|                    | 4.1   | An Overview of Classification                              | 128 |
| Agonda             | 4.2   | Why Not Linear Regression?                                 | 129 |
| Agenua             | 4.3   | Logistic Regression                                        | 130 |
|                    |       | 4.3.1 The Logistic Model                                   | 131 |
|                    |       | 4.3.2 Estimating the Regression Coefficients               | 133 |
|                    |       | 4.3.3 Making Predictions                                   | 134 |
| Homework Review    |       | 4.3.4 Multiple Logistic Regression                         | 135 |
|                    |       | 4.3.5 Logistic Regression for $>2$ Response Classes        | 137 |
| KNN for Regression | 4.4   | Linear Discriminant Analysis                               | 138 |
| (from last week)   |       | 4.4.1 Using Bayes' Theorem for Classification              | 138 |
|                    |       | 4.4.2 Linear Discriminant Analysis for $p = 1 \dots \dots$ | 139 |
| Robust Regression  |       | 4.4.3 Linear Discriminant Analysis for $p > 1$             | 142 |
|                    |       | 4.4.4 Quadratic Discriminant Analysis                      | 149 |
| Gradient Descent   | 4.5   | A Comparison of Classification Methods                     | 151 |
|                    | 4.6   | Lab: Logistic Regression, LDA, QDA, and KNN                | 154 |
| Chapter 4          |       | 4.6.1 The Stock Market Data                                | 154 |
|                    |       | 4.6.2 Logistic Regression                                  | 156 |
|                    |       | 4.6.3 Linear Discriminant Analysis                         | 161 |
|                    |       | 4.6.4 Quadratic Discriminant Analysis                      | 163 |
|                    |       | 4.6.5 K-Nearest Neighbors $\ldots$                         | 163 |
|                    |       | 4.6.6 An Application to Caravan Insurance Data             | 165 |
|                    | 4.7   | Exercises                                                  | 168 |