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Course Outline

1. Introduction to Statistical 
Learning

2. Linear Regression

3. Classification

4. Resampling Methods

5. Linear Model Selection 
and Regularization

6. Moving Beyond Linearity

7. Tree-Based Methods

8. Support Vector Machines

9. Unsupervised Learning

10.Neural Networks and 
Genetic Algorithms



Agenda

Homework Review

Chapter 4



Classification Examples

•Given a set of symptoms, diagnose medical 
condition: { Stroke, Drug Overdose, Epileptic 
Seizure }

•Determine whether an online transaction is 
fraudulent

•Determine which DNA mutations are associated 
with a disease

An Overview of Classification



Default Data Set

An Overview of Classification



Linear versus Logistic Regression

Why Not Linear Regression?



The Logistic Regression Model
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logit function:

logistic function:

The Logistic Model



Log Loss Function
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We want to maximize the likelihood function …

… which is the same as minimizing the log loss …

The Logistic Model



Model for Default: Simple Logistic Regression

Example of Simple Logistic Regression (only one predictor):

Example of a prediction:

Logistic Regression



Model for Default: Simple Logistic Regression

Model:

Prediction:

Logistic Regression



Model for Default: Multiple Logistic 
Regression
Model:

Predictions:

Logistic Regression



Confounding in the Default Data

Logistic Regression

In Table 4.2 of your book, we see that the coefficient for the student variable is positive (adds 0.4049 to the log odds); but in 
Table 4.3, we see that the coefficient for the student variable is negative (subtracts 0.6468 from the log odds). The left-hand
side of Figure 4.3 shows students have a higher default rate [the dashed lines]; but for a fixed balance, students tend to have a 
lower default rate [the solid lines]. The right-hand side shows that students tend to have higher balances.



Iteratively Reweighted Least Squares
mydata = read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")

model = glm(admit ~ ., data = mydata, family = binomial)

model$coefficients

X = as.matrix(cbind(rep(1, nrow(mydata)), mydata[,2:ncol(mydata)]))

y = mydata$admit

# logistic regression using Iteratively Reweighted Least Squares (IRLS)

beta = as.vector(array(0, ncol(X)))

for (i in 1:25) {

predictions = 1 / (1 + exp(- (X %*% beta)))

gradient = t(X) %*% (predictions - y)

Hessian = t(X) %*% diag(as.vector(predictions * (1 - predictions))) %*% X

beta = beta - solve(Hessian, diag(ncol(X))) %*% gradient

}

beta

See example code at http://cross-entropy.net/ML210/logistic_regression.txt

Logistic Regression

http://cross-entropy.net/ML210/logistic_regression.txt


Gradient Descent for Log Loss
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Logistic Regression

See example code at bottom of http://cross-entropy.net/ML210/logistic_regression.txt

http://cross-entropy.net/ML210/logistic_regression.txt


Logistic Regression for > 2 Response Classes

• Construct K-1 models for K response classes

• For the diagnosis problem { stroke, drug overdose, epileptic seizure } …

Logistic Regression



Why Cover More Than Logistic Regression?

• Estimates for the regression coefficients are 
“surprisingly” unstable when the classes are well 
separated

• If ‘n’ is small and the distribution of predictors is 
approximately Gaussian, the linear discriminant model 
is more stable

• Linear Discriminant Analysis (LDA) is popular when we 
have more than two classes

Linear Discriminant Analysis



Using Bayes Theorem for Classification

Prior * Likelihood
Posterior = 

Evidence

Linear Discriminant Analysis



Linear Discriminant Analysis (LDA) for p=1

• The term “discriminant” is just another name for a classifier; however, 
the term “Linear Discriminant Analysis” refers to the use of a 
Gaussian density function for estimating likelihood values

• The Linear Discriminant Analysis model is considered to be a 
generative classifier because it uses p(x | y) to estimate p(y | x), while 
the Logistic Regression model is considered to be a discriminative
classifier because it does not use p(x | y) to estimate p(y | x)

Linear Discriminant Analysis



Linear Discriminant Analysis

For p=1, the posterior probability is computed as follows

decision boundary for a binary classifier
*iff* the priors are equal

Linear Discriminant Analysis



Theory versus Practice

Bayes Classifier Classifier Based on Sample Data

Linear Discriminant Analysis



Linear Discriminant Analysis for p=1

Parameter Estimates for Each Class:

Linear Discriminant Analysis



Multivariate Gaussian Distribution Examples

Correlation = 0 Correlation = 0.7

Linear Discriminant Analysis



LDA with k=3 (classes) and p=2 (predictors)

Linear Discriminant Analysis



Linear Discriminant Analysis with p > 1

decision boundary for a binary classifier *iff* their priors are equal …

Linear Discriminant Analysis



Example Confusion Matrices for LDA

Classification threshold
Pr(Default = Yes | X = x) > 0.5

Classification threshold
Pr(Default = Yes | X = x) > 0.2

Classification Model Evaluation



Error Rate as a Function of Threshold for LDA 

Solid black line: overall error rate
Dotted red line: error rate for non-defaulting customers
Dashed blue lines: error rate for defaulting customers

Classification Model Evaluation



Receiver Operating Characteristic (ROC)
Curve for LDA

Area Under the Curve = 0.95

Classification Model Evaluation



Notional Confusion Matrix for Binary 
Classification

Note: as shown below, I more commonly see the true class along the 
rows [suggestion: stick with the same format]

Classification Model Evaluation



Common Classification Metrics

When reporting metrics for a classification problem with more than 
two classes, either macro (unweighted) averages can be used or micro 
(weighted) averages can be used

Classification Model Evaluation



Quadratic Disciminant Analysis (QDA)

• QDA versus LDA
• for LDA, a single covariance matrix is used for all classes

• for QDA, a covariance matrix is estimated for each class [this allows for a non-
linear boundary]

Quadratic Discriminant Analysis



Bayes versus LDA versus QDA

Dashed red line: Bayes (optimal) decision boundary
Dotted black line: LDA decision boundary
Solid green line: QDA decision boundary

LDA is better QDA is better

Quadratic Discriminant Analysis



Comparison of Classification Methods

Model Comparison



Agenda

Homework Review

KNN for Regression
(from last week)

Robust Regression

Gradient Descent

Chapter 4


